1. |
Tang F, Barbacioru C, Wang Y, et al. mRNA-Seq whole-transcriptome analysis of a single cell[J]. Nat Methods, 2009, 6(5): 377-382. DOI: 10.1038/nmeth.1315.
|
2. |
Gomis S, Labib M, Coles BLK, et al. Single-cell tumbling enables high-resolution size profiling of retinal stem cells[J]. ACS Appl Mater Interfaces, 2018, 10(41): 34811-34816. DOI: 10.1021/acsami.8b10513.
|
3. |
Phillips MJ, Jiang P, Howden S, et al. A novel approach to single cell RNA-sequence analysis facilitates in silico gene reporting of human pluripotent stem cell-derived retinal cell types[J]. Stem Cells, 2018, 36(3): 313-324. DOI: 10.1002/stem.2755.
|
4. |
Herms J, Schön C. In vivo imaging of retinal neurodegeneration at the single cell level in humans[J]. Brain, 2017, 140(6): 1542-1543. DOI: 10.1093/brain/awx100.
|
5. |
Ramsköld D, Luo S, Wang YC, et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells[J]. Nat Biotechnol, 2012, 30(8): 777-782. DOI: 10.1038/nbt.2282.
|
6. |
Picelli S, Björklund ÅK, Faridani OR, et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells[J]. Nat Methods, 2013, 10(11): 1096-1098. DOI: 10.1038/nmeth.2639.
|
7. |
Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets[J]. Cell, 2015, 161(5): 1202-1214. DOI: 10.1016/j.cell.2015.05.002.
|
8. |
Klein AM, Mazutis L, Akartuna I, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells[J]. Cell, 2015, 161(5): 1187-1201. DOI: 10.1016/j.cell.2015.04.044.
|
9. |
Gierahn TM, Wadsworth MH, 2nd, Hughes TK, et al. Seq-well: portable, low-cost RNA sequencing of single cells at high throughput[J]. Nat Methods, 2017, 14(4): 395-398. DOI: 10.1038/nmeth.4179.
|
10. |
Chen G, Ning B, Shi T. Single-cell RNA-Seq technologies and related computational data analysis[J/OL]. Front Genet, 2019, 10: 317[2019-04-05]. https://pubmed.ncbi.nlm.nih.gov/31024627/. DOI: 10.3389/fgene.2019.00317.
|
11. |
Han X, Wang R, Zhou Y, et al. Mapping the mouse cell atlas by microwell-seq[J/OL]. Cell, 2018, 173(5): 1307[2018-05-17]. https://pubmed.ncbi.nlm.nih.gov/29775597/. DOI: 10.1016/j.cell.2018.05.012.
|
12. |
Han X, Zhou Z, Fei L, et al. Construction of a human cell landscape at single-cell level[J]. Nature, 2020, 581(7808): 303-309. DOI: 10.1038/s41586-020-2157-4.
|
13. |
Jeon CJ, Strettoi E, Masland RH. The major cell populations of the mouse retina[J]. J Neurosci, 1998, 18(21): 8936-8946. DOI: 10.1523/JNEUROSCI.18-21-08936.1998.
|
14. |
Breuninger T, Puller C, Haverkamp S, et al. Chromatic bipolar cell pathways in the mouse retina[J]. J Neurosci, 2011, 31(17): 6504-6517. DOI: 10.1523/JNEUROSCI.0616-11.2011.
|
15. |
Hoon M, Okawa H, Della Santina L, et al. Functional architecture of the retina: development and disease[J]. Prog Retin Eye Res, 2014, 42: 44-84. DOI: 10.1016/j.preteyeres.2014.06.003.
|
16. |
Shekhar K, Lapan SW, Whitney IE, et al. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics[J]. Cell, 2016, 166(5): 1308-1323. DOI: 10.1016/j.cell.2016.07.054.
|
17. |
Yan W, Laboulaye MA, Tran NM, et al. Mouse retinal cell atlas: molecular identification of over sixty amacrine cell types[J]. J Neurosci, 2020, 40(27): 5177-5195. DOI: 10.1523/JNEUROSCI.0471-20.2020.
|
18. |
Rheaume BA, Jereen A, Bolisetty M, et al. Single cell transcriptome profiling of retinal ganglion cells identifies cellular subtypes[J/OL]. Nat Commun, 2018, 9(1): 2759[2018-07-17]. https://pubmed.ncbi.nlm.nih.gov/30018341/. DOI: 10.1038/s41467-018-05134-3.
|
19. |
Tran NM, Shekhar K, Whitney IE, et al. Single-cell profiles of retinal ganglion cells differing in resilience to injury reveal neuroprotective genes[J]. Neuron, 2019, 104(6): 1039-1055. DOI: 10.1016/j.neuron.2019.11.006.
|
20. |
Bae JA, Mu S, Kim JS, et al. Digital museum of retinal ganglion cells with dense anatomy and physiology[J]. Cell, 2018, 173(5): 1293-1306. DOI: 10.1016/j.cell.2018.04.040.
|
21. |
Wässle H, Puller C, Müller F, et al. Cone contacts, mosaics, and territories of bipolar cells in the mouse retina[J]. J Neurosci, 2009, 29(1): 106-117. DOI: 10.1523/JNEUROSCI.4442-08.2009.
|
22. |
Masland RH. The neuronal organization of the retina[J]. Neuron, 2012, 76(2): 266-280. DOI: 10.1016/j.neuron.2012.10.002.
|
23. |
Lukowski SW, Lo CY, Sharov AA, et al. A single-cell transcriptome atlas of the adult human retina[J/OL]. EMBO J, 2019, 38(18): e100811[2019-09-16]. https://pubmed.ncbi.nlm.nih.gov/31436334/. DOI: 10.15252/embj.2018100811.
|
24. |
Yi W, Lu Y, Zhong S, et al. A single-cell transcriptome atlas of the aging human and macaque retina[J/OL]. Natl Sci Rev, 2021, 8(4): nwaa179[2020-08-25]. https://pubmed.ncbi.nlm.nih.gov/34691611/. DOI: 10.1093/nsr/nwaa179.
|
25. |
Daniszewski M, Senabouth A, Nguyen QH, et al. Single cell RNA sequencing of stem cell-derived retinal ganglion cells[J/OL]. Sci Data, 2018, 5: 180013[2018-02-13]. https://pubmed.ncbi.nlm.nih.gov/29437159/. DOI: 10.1038/sdata.2018.13.
|
26. |
Lu Y, Shiau F, Yi W, et al. Single-cell analysis of human retina identifies evolutionarily conserved and species-specific mechanisms controlling development[J]. Dev Cell, 2020, 53(4): 473-491. DOI: 10.1016/j.devcel.2020.04.009.
|
27. |
Hu Y, Wang X, Hu B, et al. Dissecting the transcriptome landscape of the human fetal neural retina and retinal pigment epithelium by single-cell RNA-seq analysis[J/OL]. PLoS Biol, 2019, 17(7): e3000365[2019-07-03]. https://pubmed.ncbi.nlm.nih.gov/31269016/. DOI: 10.1371/journal.pbio.3000365.
|
28. |
Wang S, Zheng Y, Li Q, et al. Deciphering primate retinal aging at single-cell resolution[J]. Protein Cell, 2021, 12(11): 889-898. DOI: 10.1007/s13238-020-00791-x.
|
29. |
Clark BS, Stein-O'Brien GL, Shiau F, et al. Single-cell RNA-Seq analysis of retinal development identifies NFI factors as regulating mitotic exit and late-born cell specification[J]. Neuron, 2019, 102(6): 1111-1126. DOI: 10.1016/j.neuron.2019.04.010.
|
30. |
Voigt AP, Binkley E, Flamme-Wiese MJ, et al. Single-cell RNA sequencing in human retinal degeneration reveals distinct glial cell populations[J]. Cells, 2020, 9(2): 438. DOI: 10.3390/cells9020438.
|
31. |
Yu Y, Liu P. Usage of single-cell RNA sequencing to unveil immune lymphoid cell precursors[J]. Methods Mol Biol, 2019, 1884: 73-86. DOI: 10.1007/978-1-4939-8885-3_5.
|
32. |
Ronning KE, Karlen SJ, Miller EB, et al. Molecular profiling of resident and infiltrating mononuclear phagocytes during rapid adult retinal degeneration using single-cell RNA sequencing[J/OL]. Sci Rep, 2019, 9(1): 4858[2019-03-19]. https://pubmed.ncbi.nlm.nih.gov/30890724/. DOI: 10.1038/s41598-019-41141-0.
|
33. |
Yu C, Saban DR. Identification of a unique subretinal microglia type in retinal degeneration using single cell RNA-Seq[J]. Adv Exp Med Biol, 2019, 1185: 181-186. DOI: 10.1007/978-3-030-27378-1_30.
|
34. |
Voigt AP, Mulfaul K, Mullin NK, et al. Single-cell transcriptomics of the human retinal pigment epithelium and choroid in health and macular degeneration[J]. Proc Natl Acad Sci USA, 2019, 116(48): 24100-24107. DOI: 10.1073/pnas.1914143116.
|
35. |
Menon M, Mohammadi S, Davila-Velderrain J, et al. Single-cell transcriptomic atlas of the human retina identifies cell types associated with age-related macular degeneration[J/OL]. Nat Commun, 2019, 10(1): 4902[2019-10-25]. https://pubmed.ncbi.nlm.nih.gov/31653841/. DOI: 10.1038/s41467-019-12780-8.
|
36. |
Luthert PJ, Kiel C. Combining gene-disease associations with single-cell gene expression data provides anatomy-specific subnetworks in age-related macular degeneration[J]. Netw Syst Med, 2020, 3(1): 105-121. DOI: 10.1089/nsm.2020.0005.
|
37. |
Zhang Z, Xu Z, Yuan F, et al. Retinal organoid technology: where are we now?[J/OL]. Int J Mol Sci, 2021, 22(19): 10244[2021-09-23]. https://pubmed.ncbi.nlm.nih.gov/34638582/. DOI: 10.3390/ijms221910244.
|
38. |
Wang S, Poli S, Liang X, et al. Longitudinal single-cell RNA-seq of hESCs-derived retinal organoids[J]. Sci China Life Sci, 2021, 64(10): 1661-1676. DOI: 10.1007/s11427-020-1836-7.
|
39. |
You M, Rong R, Zeng Z, et al. Single-cell RNA sequencing: a new opportunity for retinal research[J/OL]. Wiley Interdiscip Rev RNA, 2021, 12(5): e1652[2021-03-22]. https://pubmed.ncbi.nlm.nih.gov/33754496/. DOI: 10.1002/wrna.1652.
|
40. |
Ying P, Huang C, Wang Y, et al. Single-cell RNA sequencing of retina: new looks for gene marker and old diseases[J/OL]. Front Mol Biosci, 2021, 8: 699906[2021-07-30]. https://pubmed.ncbi.nlm.nih.gov/34395530/. DOI: 10.3389/fmolb.2021.699906.
|
41. |
Sun L, Wang R, Hu G, et al. Single cell RNA sequencing (scRNA-Seq) deciphering pathological alterations in streptozotocin-induced diabetic retinas[J/OL]. Exp Eye Res, 2021, 210: 108718[2021-08-06]. https://pubmed.ncbi.nlm.nih.gov/34364890/. DOI: 10.1016/j.exer.2021.108718.
|
42. |
Voigt AP, Mullin NK, Stone EM, et al. Single-cell RNA sequencing in vision research: insights into human retinal health and disease[J/OL]. Prog Retin Eye Res, 2021, 83: 100934[2020-12-28]. https://pubmed.ncbi.nlm.nih.gov/33383180/. DOI: 10.1016/j.preteyeres.2020.100934.
|
43. |
Shiau F, Ruzycki PA, Clark BS. A single-cell guide to retinal development: cell fate decisions of multipotent retinal progenitors in scRNA-seq[J]. Dev Biol, 2021, 478: 41-58. DOI: 10.1016/j.ydbio.2021.06.005.
|
44. |
Rossin EJ, Sobrin L, Kim LA. Single-cell RNA sequencing: an overview for the ophthalmologist[J]. Semin Ophthalmol, 2021, 36(4): 191-197. DOI: 10.1080/08820538.2021.1889615.
|
45. |
Xiao Y, Hu X, Fan S, et al. Single-cell transcriptome profiling reveals the suppressive role of retinal neurons in microglia activation under diabetes mellitus[J/OL]. Front Cell Dev Biol, 2021, 9: 680947[2021-08-09]. https://pubmed.ncbi.nlm.nih.gov/34434927/. DOI: 10.3389/fcell.2021.680947.
|
46. |
Niu T, Fang J, Shi X, et al. Pathogenesis study based on high-throughput single-cell sequencing analysis reveals novel transcriptional landscape and heterogeneity of retinal cells in type 2 diabetic mice[J]. Diabetes, 2021, 70(5): 1185-1197. DOI: 10.2337/db20-0839.
|
47. |
Voigt AP, Whitmore SS, Lessing ND, et al. Spectacle: an interactive resource for ocular single-cell RNA sequencing data analysis[J/OL]. Exp Eye Res, 2020, 200: 108204[2020-09-07]. https://pubmed.ncbi.nlm.nih.gov/32910939/. DOI: 10.1016/j.exer.2020.108204.
|
48. |
Swamy VS, Fufa TD, Hufnagel RB, et al. Building the mega single-cell transcriptome ocular meta-atlas[J/OL]. Gigascience, 2021, 10(10): giab061[2021-10-13]. https://pubmed.ncbi.nlm.nih.gov/34651173/. DOI: 10.1093/gigascience/giab061.
|