1. |
刘瑄, 陶勇. 用好眼内液检测[J]. 中华眼科医学杂志(电子版), 2018, 8(5): 193-201. DOI: 10.3877/cma.j.issn.2095-2007.2018.05.001.Liu X, Tao Y. Use the examination of intraocular fluid well[J]. Chin J Ophthalmol Med (Electronic Edition), 2018, 8(5): 193-201. DOI: 10.3877/cma.j.issn.2095-2007.2018.05.001.
|
2. |
Ohno-Matsui K, Lai TY, Lai CC, et al. Updates of pathologic myopia[J]. Prog Retin Eye Res, 2016, 52: 156-187. DOI: 10.1016/j.preteyeres.2015.12.001.
|
3. |
邵珺, 辛瑜, 李荣秀, 等. 病理性近视眼患者血清蛋白质组学分子标志物筛选[J]. 中华眼科杂志, 2012, 48(3): 246-252. DOI: 10.3760/cma.j.issn.0412-4081.2012.03.010.Shao J, Xin Y, Li RX, et al. Proteomies analysis of serum biomarks in patients witll pathological myopia[J]. Chin J Ophthalmol, 2012, 48(3): 246-252. DOI: 10.3760/cma.j.issn.0412-4081.2012.03.010.
|
4. |
Shao J, Yao Y. Negative effects of transthyretin in high myopic vitreous on diabetic retinopathy[J]. Int J Ophthalmol, 2017, 10(12): 1864-1869. DOI: 10.18240/ijo.2017.12.12.
|
5. |
Liz MA, Coelho T, Bellotti V, et al. A narrative review of the role of transthyretin in health and disease[J]. Neurol Ther, 2020, 9(2): 395-402. DOI: 10.1007/s40120-020-00217-0.
|
6. |
Mertz JR, Wallman J. Choroidal retinoic acid synthesis: a possible mediator between refractive error and compensatory eye growth[J]. Exp Eye Res, 2000, 70(4): 519-527. DOI: 10.1006/exer.1999.0813.
|
7. |
Shao J, Xin Y, Li R, et al. Vitreous and serum levels of transthyretin (TTR) in high myopia patients are correlated with ocular pathologies[J]. Clin Biochem, 2011, 44(8-9): 681-685. DOI: 10.1016/j.clinbiochem.2011.03.032.
|
8. |
Shao J, Xin Y, Yao Y. Correlation of misfolded transthyretin in abnormal vitreous and high myopia related ocular pathologies[J]. Clin Chim Acta, 2011, 412(23-24): 2117-2121. DOI: 10.1016/j.cca.2011.07.021.
|
9. |
Shao J, Xin Y, Yao Y, et al. Functional analysis of misfolded transthyretin extracted from abnormal vitreous with high myopia related ocular pathologies[J]. Clin Chim Acta, 2013, 415: 20-24. DOI: 10.1016/j.cca.2012.09.006.
|
10. |
Liz MA, Faro CJ, Saraiva MJ, et al. Transthyretin, a new cryptic protease[J]. J Biol Chem, 2004, 279(20): 21431-21438. DOI: 10.1074/jbc.M402212200.
|
11. |
Tsai CY, Chen CT, Lin CH, et al. Proteomic analysis of exosomes derived from the aqueous humor of myopia patients[J]. Int J Med Sci, 2021, 18(9): 2023-2029. DOI: 10.7150/ijms.51735.
|
12. |
Kim EB, Kim HK, Hyon JY, et al. Oxidative stress levels in aqueous humor from high myopic patients[J]. Korean J Ophthalmol, 2016, 30(3): 172-179. DOI: 10.3341/kjo.2016.30.3.172.
|
13. |
訾迎新, 金明. 氧化应激在高度近视发病机制中的作用研究进展[J]. 眼科新进展, 2020, 40(4): 388-391. DOI: 10.13389/j.cnki.rao.2020.0090.Zi YX, Jin M. Research progress on the role of oxidative stress in the pathogenesis of high myopia[J]. Rec Adv Ophthalmol, 2020, 40(4): 388-391. DOI: 10.13389/j.cnki.rao.2020.0090.
|
14. |
Francisco BM, Salvador M, Amparo N. Oxidative stress in myopia[J/OL]. Oxid Med Cell Longev, 2015, 2015: 750637[2015-04-01]. https://pubmed.ncbi.nlm.nih.gov/25922643/. DOI: 10.1155/2015/750637.
|
15. |
Ozawa Y. Oxidative stress in the light-exposed retina and its implication in age-related macular degeneration[J/OL]. Redox Biol, 2020, 37: 101779[2020-11-02]. https://pubmed.ncbi.nlm.nih.gov/33172789/. DOI: 10.1016/j.redox.2020.101779.
|
16. |
Ham WT, Mueller HA, Ruffolo JJ, et al. Basic mechanisms underlying the production of photochemical lesions in the mammalian retina[J]. Curr Eye Res, 1984, 3(1): 165-174. DOI: 10.3109/02713688408997198.
|
17. |
Wei Q, Zhang T, Fan J, et al. Pathological myopia-induced antioxidative proteins in the vitreous humor[J]. Ann Transl Med, 2020, 8(5): 193. DOI: 10.21037/atm.2020.01.63.
|
18. |
Beuckmann CT, Gordon WC, Kanaoka Y, et al. Lipocalin-type prostaglandin D synthase (beta-trace) is located in pigment epithelial cells of rat retina and accumulates within interphotoreceptor matrix[J]. J Neurosci, 1996, 16(19): 6119-6124. DOI: 10.1523/JNEUROSCI.16-19-06119.1996.
|
19. |
Lögdberg L, Wester L. Immunocalins: a lipocalin subfamily that modulates immune and inflammatory responses[J]. Biochim Biophys Acta, 2000, 1482(1-2): 284-297. DOI: 10.1016/s0167-4838(00)00164-3.
|
20. |
Taniguchi H, Mohri I, Okabe-arahori H, et al. Prostaglandin D2 protects neonatal mouse brain from hypoxic ischemic injury[J]. J Neurosci, 2007, 27(16): 4303-4312. DOI: 10.1523/JNEUROSCI.0321-07.2007.
|
21. |
Jaggi GP, Flammer J, Huber AR, et al. Lipocalin-like prostaglandin D synthase in subretinal fluid of detached retinas in humans[J]. Retina, 2008, 28(6): 858-863. DOI: 10.1097/IAE.0b013e3181631975.
|
22. |
Kuo HK, Chen YH, Huang F, et al. The upregulation of zinc finger protein 670 and prostaglandin D2 synthase in proliferative vitreoretinopathy[J]. Graefe's Arch Clin Exp Ophthalmol, 2016, 254(2): 205-213. DOI: 10.1007/s00417-015-3022-2.
|
23. |
Loukovaara S, Nurkkala H, Tamene F, et al. Quantitative proteomics analysis of vitreous humor from diabetic retinopathy patients[J]. J Proteome Res, 2015, 14(12): 5131-5143. DOI: 10.1021/acs.jproteome.5b00900.
|
24. |
Fukuhara A, Yamada M, Fujimori K, et al. Lipocalin-type prostaglandin D synthase protects against oxidative stress-induced neuronal cell death[J]. Biocheml J, 2012, 443(1): 75-84. DOI: 10.1042/BJ20111889.
|
25. |
Wang M, Li J, Zheng Y. The potential role of nuclear factor erythroid 2-related factor 2 (Nrf2) in glaucoma: a review[J/OL]. Med Sci Monit, 2020, 26: e921514[2020-01-17]. https://pubmed.ncbi.nlm.nih.gov/31949124/. DOI: 10.12659/MSM.921514.
|
26. |
Zhuang H, Zhang R, Shu Q, et al. Changes of TGF-β2, MMP-2, and TIMP-2 levels in the vitreous of patients with high myopia[J]. Graefe's Arch Clin Exp Ophthalmol, 2014, 252(11): 1763-1767. DOI: 10.1007/s00417-014-2768-2.
|
27. |
Schaeffel F. Myopie-update 2011[J]. Klin Monbl Augenheilkd, 2011, 228(9): 754-761. DOI: 10.1055/s-0031-1281584.
|
28. |
Wei Q, Zhuang X, Fan J, et al. Proinflammatory and angiogenesis-related cytokines in vitreous samples of highly myopic patients[J/OL]. Cytokine, 2021, 137: 155308[2020-10-28]. https://pubmed.ncbi.nlm.nih.gov/33128924/. DOI: 10.1016/j.cyto.2020.155308.
|
29. |
Yuan J, Wu S, Wang Y, et al. Inflammatory cytokines in highly myopic eyes[J/OL]. Sci Rep, 2019, 9(1): 3517[2019-03-05]. https://pubmed.ncbi.nlm.nih.gov/30837544/. DOI: 10.1038/s41598-019-39652-x.
|
30. |
Sun J, Wang Y, Wang J. Choroidal arterial watershed zone topography and its relationship with maculopathy in highly myopic eyes[J]. Eye (Lond), 2021, 35(9): 2624-2630. DOI: 10.1038/s41433-021-01427-y.
|
31. |
Michalczyk ER, Chen L, Fine D, et al. Pigment epithelium-derived factor (PEDF) as a regulator of wound angiogenesis[J/OL]. Sci Rep, 2018, 8(1): 11142[2018-07-24]. https://pubmed.ncbi.nlm.nih.gov/30042381/. DOI: 10.1038/s41598-018-29465-9.
|
32. |
Shen X, Zhong Y, Xie B, et al. Pigment epithelium derived factor as an anti-inflammatory factor against decrease of glutamine synthetase expression in retinal Müller cells under high glucose conditions[J]. Graefe's Arch Clin Exp Ophthalmol, 2010, 248(8): 1127-1136. DOI: 10.1007/s00417-010-1362-5.
|
33. |
Ma B, Zhou Y, Liu R, et al. Pigment epithelium-derived factor (PEDF) plays anti-inflammatory roles in the pathogenesis of dry eye disease[J]. Ocul Surf, 2021, 20: 70-85. DOI: 10.1016/j.jtos.2020.12.007.
|
34. |
Shin YJ, Nam WH, Park SE, et al. Aqueous humor concentrations of vascular endothelial growth factor and pigment epithelium-derived factor in high myopic patients[J]. Mol Vis, 2012, 18: 2265-2270.
|
35. |
Ogata N, Imaizumi M, Miyashiro M, et al. Low levels of pigment epithelium-derived factor in highly myopic eyes with chorioretinal atrophy[J]. Am J Ophthalmol, 2005, 140(5): 937-939. DOI: 10.1016/j.ajo.2005.05.037.
|
36. |
Ikuno Y, Tano Y. Retinal and choroidal biometry in highly myopic eyes with spectral-domain optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 2009, 50(8): 3876-3880. DOI: 10.1167/iovs.08-3325.
|
37. |
Chen W, Song H, Xie S, et al. Correlation of macular choroidal thickness with concentrations of aqueous vascular endothelial growth factor in high myopia[J]. Curr Eye Res, 2015, 40(3): 307-313. DOI: 10.3109/02713683.2014.973043.
|
38. |
Wakabayashi T, Ikuno Y, Oshima Y, et al. Aqueous concentrations of vascular endothelial growth factor in eyes with high myopia with and without choroidal neovascularization[J/OL]. J Ophthalmol, 2013, 2013: 257381[2013-03-06]. https://pubmed.ncbi.nlm.nih.gov/23533702/. DOI: 10.1155/2013/257381.
|
39. |
Lin HJ, Wei CC, Chang CY, et al. Role of chronic inflammation in myopia progression: clinical evidence and experimental validation[J]. EBioMedicine, 2016, 10: 269-281. DOI: 10.1016/j.ebiom.2016.07.021.
|
40. |
Wei CC, Kung YJ, Chen CS, et al. Allergic conjunctivitis-induced retinal inflammation promotes myopia progression[J]. EBioMedicine, 2018, 28: 274-286. DOI: 10.1016/j.ebiom.2018.01.024.
|
41. |
Wang X, Li M, Zheng R, et al. High irisin and low BDNF levels in aqueous humor of high myopia[J]. Adv Clin Exp Med, 2021, 30(9): 893-904. DOI: 10.17219/acem/125428.
|
42. |
Wilkinson-berka JL, Deliyanti D. The potential of anti-VEGF (Vasotide) by eye drops to treat proliferative retinopathies[J]. Ann Transl Med, 2016, 4(Suppl 1): S41. DOI: 10.21037/atm.2016.10.27.
|
43. |
Bochmann F, Kaufmann C, Becht CN, et al. ISRCTN12125882-influence of topical anti-VEGF (ranibizumab) on the outcome of filtration surgery for glaucoma-study protocol[J]. BMC ophthalmol, 2011, 11: 1. DOI: 10.1186/1471-2415-11-1.
|
44. |
Krizova D, Vokrojova M, Liehneova K, et al. Treatment of corneal neovascularization using anti-VEGF bevacizumab[J/OL]. J Ophthalmol, 2014, 2014: 178132[2014-03-23]. https://pubmed.ncbi.nlm.nih.gov/24778865/. DOI: 10.1155/2014/178132.
|
45. |
Bai HX, Mao Y, Shen L, et al. Bruch's membrane thickness in relationship to axial length[J/OL]. PLoS One, 2017, 12(8): e0182080[2017-08-02]. https://pubmed.ncbi.nlm.nih.gov/28767664/. DOI: 10.1371/journal.pone.0182080.
|
46. |
Dong L, Shi XH, Kang YK, et al. Bruch's membrane thickness and retinal pigment epithelium cell density in experimental axial elongation[J/OL]. Sci Rep, 2019, 9(1): 6621[2019-04-29]. https://pubmed.ncbi.nlm.nih.gov/31036950/. DOI: 10.1038/s41598-019-43212-8.
|
47. |
Jonas JB, Ohno-matsui K, Jiang WJ, et al. Bruch membrane and the mechanism of myopization: a new theory[J]. Retina, 2017, 37(8): 1428-1440. DOI: 10.1097/IAE.0000000000001464.
|
48. |
Jonas JB, Ohno-matsui K, Panda-Jonas S. Myopia: anatomic changes and consequences for its etiology[J]. Asia Pac J Ophthalmol (Phila), 2019, 8(5): 355-359. DOI: 10.1097/01.APO.0000578944.25956.8b.
|
49. |
Zhu XJ, Chen MJ, Zhang KK, et al. Elevated TGF-β2 level in aqueous humor of cataract patients with high myopia: potential risk factor for capsule contraction syndrome[J]. J Cataract Refract Surg, 2016, 42(2): 232-238. DOI: 10.1016/j.jcrs.2015.09.027.
|
50. |
Wang L, Liu MY, Yin G, et al. Exogenous tissue inhibitor of metalloproteinase-2 affects matrix metalloproteinase-2 expression in conjunctival filtering blebs and bleb scarring in rats[J/OL]. BioMed Res Int, 2018, 2018: 9365950[2018-05-31]. https://pubmed.ncbi.nlm.nih.gov/29955613/. DOI: 10.1155/2018/9365950.
|
51. |
Shyu LY, Chen KM, Lai SC. Matrix metalloproteinase-2 and matrix metalloproteinase-9 in mice with ocular toxocariasis[J]. Parasitol Res, 2019, 118(2): 483-491. DOI: 10.1007/s00436-018-06196-4.
|
52. |
Xi LY, Yip SP, Shan SW, et al. Region-specific differential corneal and scleral mRNA expressions of MMP2, TIMP2, and TGFB2 in highly myopic-astigmatic chicks[J/OL]. Sci Rep, 2017, 7(1): 11423[2017-09-12]. https://pubmed.ncbi.nlm.nih.gov/28900109/. DOI: 10.1038/s41598-017-08765-6.
|
53. |
Wen K, Shao X, Li Y, et al. The plasminogen protein is associated with high myopia as revealed by the iTRAQ-based proteomic analysis of the aqueous humor[J/OL]. Sci Rep, 2021, 11(1): 8789[2021-04-22]. https://pubmed.ncbi.nlm.nih.gov/33888814/. DOI: 10.1038/s41598-021-88220-9.
|