1. |
Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050[J]. Ophthalmology, 2016, 123(5): 1036-1042. DOI: 10.1016/j.ophtha.2016.01.006.
|
2. |
Wang HY, Tao MZ, Wang XX, et al. Baseline characteristics of myopia choroidal neovascularization in patients above 50 years old and prognostic factors after intravitreal conbercept treatment[J/OL]. Sci Rep, 2021, 11(1): 7337[2021-04-01]. https://pubmed.ncbi.nlm.nih.gov/33795797/. DOI: 10.1038/s41598-021-86835-6.
|
3. |
Parolini B, Palmieri M, Finzi A, et al. The new myopic traction maculopathy staging system[J]. Eur J Ophthalmol, 2021, 31(3): 1299-1312. DOI: 10.1177/1120672120930590.
|
4. |
Elnahry AG, Khafagy MM, Esmat SM, et al. Prevalence and associations of posterior segment manifestations in a cohort of egyptian patients with pathological myopia[J]. Curr Eye Res, 2019, 44(9): 955-962. DOI: 10.1080/02713683.2019.1606252.
|
5. |
Saiko M, Charumathi S, Chee WW, et al. Characteristics of myopic traction maculopathy in myopic Singaporean adult[J]. Br J Ophthalmol, 2021, 105(4): 531-537. DOI: 10.1136/bjophthalmol-2020-316182.
|
6. |
Lee KS, Lee JS, Koh HJ. Surgical outcomes of myopic traction maculopathy according to the international photographic classification for myopic maculopathy[J]. Retina, 2020, 40(8): 1492-1499. DOI: 10.1097/IAE.0000000000002642.
|
7. |
dell'Omo R, Virgili G, Bottoni F, et al. Lamellar macular holes in the eyes with pathological myopia[J]. Graefe's Arch Clin Exp Ophthalmol, 2018, 256(7): 1281-1290. DOI: 10.1007/s00417-018-3995-8.
|
8. |
Shimada N, Tanaka Y, Tokoro T, et al. Natural course of myopic traction maculopathy and factors associated with progression or resolution[J]. Am J Ophthalmol, 2013, 156(5): 948-957. DOI: 10.1016/j.ajo.2013.06.031.
|
9. |
Ruiz-Medrano J, Montero JA, Flores-Moreno I, et al. Myopic maculopathy: current status and proposal for a new classification and grading system (ATN)[J]. Prog Retin Eye Res, 2019, 69: 80-115. DOI: 10.1016/j.preteyeres.2018.10.005.
|
10. |
Li J, Liu B, Li Y, et al. Clinical characteristics of eyes with different gardes of myopic traction maculopathy based on the ATN classification system[J]. Retina, 2021, 41(7): 1496-1501. DOI: 10.1097/IAE.0000000000003043.
|
11. |
Takahashi H, Tanaka N, Shinohara K, et al. Importance of paravascular vitreal adhesions for development of myopic macular retinoschisis detected by ultra-widefield OCT[J]. Ophthalmology, 2021, 128(2): 256-265. DOI: 10.1016/j.ophtha.2020.06.063.
|
12. |
Chen L, Wei Y, Zhou X, et al. Morphologic, biomechanical and compositional features of the internal limiting membrane in pathologic myopic foveoschisis[J]. Invest Ophthalmol Vis Sci, 2018, 59(13): 5569-5578. DOI: 10.1167/iovs.18-24676.
|
13. |
张弓, 张小猛. 高度近视黄斑劈裂的研究进展[J]. 中国眼耳鼻喉杂志, 2019, 19(5): 366-369. DOI: 10.14166/j.issn.1671-2420.2019.05.020.Zhang G, Zhang XM. Advances in research on high myopic foveoschisis[J]. Chin J Ophthalmol and otorhinolaryngol, 2019, 19(5): 366-369. DOI: 10.14166/j.issn.1671-2420.2019.05.020.
|
14. |
Yu X, Ma W, Liu B, et al. Morphological analysis and quantitative evaluation of myopic maculopathy by three-dimensional magnetic resonance imaging[J]. Eye (Lond), 2018, 32(4): 782-787. DOI: 10.1038/eye.2017.263.
|
15. |
Shinohara K, Tanaka N, Jonas JB, et a1. Uhrawide-field OCT to investigate relationships between myopic macular retinoschisis and posterior staphyloma[J]. Ophthalmology, 2018, 125(10): 1575-1586. DOI: 10.1016/j.ophtha.2018.03.053.
|
16. |
Zhao X, Ding X, Lyu C, et al. Observational study of clinical characteristics of dome-shaped macula in Chinese Han with high myopia at Zhongshan Ophthalmic Centre[J/OL]. BMJ Open, 2018, 8(12): e021887[2018-12-22]. https://pubmed.ncbi.nlm.nih.gov/30580257/. DOI: 10.1136/bmjopen-2018-021887.
|
17. |
Wang SW, Hung KC, Tsai CY, et al. Myopic traction maculopathy biomarkers on optical coherence tomography angiography-an overlooked mechanism of visual acuity correction in myopic eyes[J]. Eye (Lond), 2019, 33(8): 1305-1313. DOI: 10.1038/s41433-019-0424-0.
|
18. |
Lehmann M, Devin F, Rothschild PR, et al. Preoperative factors influencing visual recovery after vitrectomy for myopic foveoschisis[J]. Retina, 2019, 39(3): 594-600. DOI: 10.1097/IAE.0000000000001992.
|
19. |
Lee DH, Moon I, Kang HG, et al. Surgical outcome and prognostic factors influencing visual acuity in myopic foveoschisis patients[J]. Eye (Lond), 2019, 33(10): 1642-1648. DOI: 10.1038/s41433-019-0462-7.
|
20. |
Parolini B, Palmieri M, Finzi A, et al. Myopic traction maculopathy: a new perspective on classification and management[J]. Asia Pac J Ophthalmol (Phila), 2021, 10(1): 49-59. DOI: 10.1097/APO.0000000000000347.
|
21. |
Meng B, Zhao L, Yin Y, et al. Internal limiting membrane peeling and gas tamponade for myopic foveoschisis: a systematic review and meta-analysis[J]. BMC Ophthalmol, 2017, 17(1): 166. DOI: 10.1186/s12886-017-0562-8.
|
22. |
Liu B, Chen S, Li Y, et al. Comparison of macular buckling and vitrectomy for the treatment of macular schisis and associated macular detachment in high myopia: a randomized clinical trial[J/OL]. Acta Ophthalmol, 2020, 98(3): e266-e272[2019-11-17]. https://pubmed.ncbi.nlm.nih.gov/31736279/. DOI: 10.1111/aos.14260.
|
23. |
Xin W, Cai X, Xiao Y, et al. Surgical treatment for type Ⅱ macular hole retinal detachment in pathologic myopia[J/OL]. Medicine (Baltimore), 2020, 99(17): e19531[2020-04-01]. https://pubmed.ncbi.nlm.nih.gov/32332602/. DOI: 10.1097/md.0000000000019531.
|
24. |
Steel DH, Donachie P, Aylward GW, et al. Factors affecting anatomical and visual outcome after macular hole surgery: findings from a large prospective UK cohort[J]. Eye (Lond), 2020, 35(1): 316-325. DOI: 10.1038/s41433-020-0844-x.
|
25. |
Wei Y, Wang N, Zu Z, et al. Efficacy of vitrectomy with triamcinolone assistance versus internal limiting membrane peeling for highly myopic macular hole retinal detachment[J]. Retina, 2013, 33(6): 1151-1157. DOI: 10.1097/IAE.0b013e31827b6422.
|
26. |
Kumar V, Dubey D, Kumawat D, et al. Role of internal limiting membrane peeling in the prevention of epiretinal membrane formation following vitrectomy for retinal detachment: a randomised trial[J]. Br J Ophthalmol, 2020, 104(9): 1271-1276. DOI: 10.1136/bjophthalmol-2019-315095.
|
27. |
Tsuchiya S, Higashide T, Udagawa S, et al. Glaucoma-related central visual field deterioration after vitrectomy for epiretinal membrane: topographic characteristics and risk factors[J]. Eye, 2020, 35(3): 919-928. DOI: 10.1038/s41433-020-0996-8.
|
28. |
Santos AR, Raimundo M, Alves D, et al. Microperimetry and mfERG as functional measurements in diabetic macular oedema undergoing intravitreal ranibizumab treatment[J]. Eye, 2021, 35(5): 1384-1392. DOI: 10.1038/s41433-020-1054-2.
|
29. |
Iwasaki M, Miyamoto H, Okushiba U, et al. Fovea-sparing internal limiting membrane peeling versus complete internal limiting membrane peeling for myopic traction maculopathy[J]. Jpn J Ophthalmol, 2020, 64(1): 13-21. DOI: 10.1007/s10384-019-00696-1.
|
30. |
Wu J, Xu Q, Luan J. Vitrectomy with fovea-sparing ILM peeling versus total ILM peeling for myopic traction maculopathy: a meta-analysis[J]. Eur J Ophthalmol, 2021, 31(5): 2596-2605. DOI: 10.1177/1120672120970111.
|
31. |
Elwan MM, Abdelghafar AE, Hagras SM, et al. Long-term outcome of internal limiting membrane peeling with and without foveal sparing in myopic foveoschisis[J]. Eur J Ophthalmol, 2019, 29(1): 69-74. DOI: 10.1177/1120672117750059.
|
32. |
Wang L, Wang Y, Li Y, et al. Comparison of effectiveness between complete internal limiting membrane peeling and internal limiting membrane peeling with preservation of the central fovea in combinationwith 25G vitrectomy for the treatment of high myopic foveoschisis[J/OL]. Medicine (Baltimore), 2019, 98: e14710[2019-03-01]. https://pubmed.ncbi.nlm.nih.gov/30817612/. DOI: 10.1097/MD.0000000000014710.
|
33. |
Lee CL, Wu WC, Chen KJ, et al. Modified internal limiting membrane peeling technique (maculorrhexis) for myopic foveoschisis surgery[J/OL]. Acta Ophthalmol, 2017, 95: e128-e131[2017-03-01]. https://pubmed.ncbi.nlm.nih.gov/27320761/. DOI: 10.1111/aos.13115.
|
34. |
Silva N, Ferreira N, Pessoa B, et al. Inverted internal limiting membrane flap technique in the surgical treatment of macular holes: 8-year experience[J]. Int Ophthalmol, 2021, 41(2): 499-507. DOI: 10.1007/s10792-020-01600-4.
|
35. |
Ling L, Liu Y, Zhou B, et al. Inverted internal limiting membrane flap technique versus internal limiting membrane peeling for vitrectomy in highly myopic eyes with macular hole-induced retinal detachment: an updated meta-analysis[J/OL]. J Ophthalmol, 2020, 2020: 2374650[2020-08-24]. https://pubmed.ncbi.nlm.nih.gov/32908680/. DOI: 10.1155/2020/2374650.
|
36. |
Chatziralli I, Machairoudia G, Kazantzis D, et al. Inverted internal limiting membrane flap technique for myopic macular hole: a meta-analysis[J]. Ophthalmol, 2021, 66(5): 771-780. DOI: 10.1016/j.survophthal.2021.02.010.
|
37. |
Faria MY, Proença H, Ferreira NG, et al. Inverted internal limiting membrane FLAP techniques and outer retinal layer structures[J]. Retina, 2020, 40(7): 1299-1305. DOI: 10.1097/IAE.0000000000002607.
|
38. |
吴桢泉, 赵秀娟, 陈士达, 等. 黄斑扣带术治疗高度近视眼牵拉性黄斑病变的疗效观察[J]. 中华眼科杂志, 2021, 57(6): 433-439. DOI: 10.3760/cma.j.cn112142-20200910-00581.Wu ZQ, Zhao XJ, Chen SD, et al. Macular buckling for highly myopic traction maculopathy[J]. Chin J Ophthalmol, 2021, 57(6): 433-439. DOI: 10.3760/cma.j.cn112142-20200910-00581.
|
39. |
Zhao X, Ma W, Lian P, et al. Three-year outcomes of macular buckling for macular holes and foveoschisis in highly myopic eyes[J/OL]. Acta Ophthalmol, 2020, 98(4): e470-e478[2019-11-19]. https://pubmed.ncbi.nlm.nih.gov/31742899/. DOI: 10.1111/aos.14305.
|
40. |
Mura M, Iannetta D, Buschini E, et al. T-shaped macular buckling combined with 25G pars plana vitrectomy for macular hole, macular schisis, and macular detachment in highly myopic eyes[J]. Br J Ophthalmol, 2017, 101(3): 383-388. DOI: 10.1136/bjophthalmol-2015-308124.
|
41. |
Pan AP, Wan T, Zhu SQ, et al. Clinical investigation of the posterior scleral contraction to treat macular traction maculopathy in highly myopic eyes[J/OL]. Sci Rep, 2017, 7: 43256[2017-12-21]. https://pubmed.ncbi.nlm.nih.gov/28220890/. DOI: 10.1038/srep43256.
|
42. |
Zou J, Tan W, Li F, et al. Outcomes of a new 3-D printing-assisted personalized macular buckle combined with para plana vitrectomy for myopic foveoschisis[J]. Acta Ophthalmol, 2020, 99(6): 688-694. DOI: 10.1111/aos.14711.
|
43. |
Zhu SQ, Pan AP, Zheng LY, et al. Posterior scleral reinforcement using genipin-cross-linked sclera for macular hole retinal detachment in highly myopic eyes[J]. Br J Ophthalmol, 2018, 102(12): 1701-1704. DOI: 10.1136/bjophthalmol-2017-311340.
|
44. |
Ye J, Pan AP, Zhu S, et al. Posterior scleral contraction to treat myopic foveoschisis in highly myopic eyes[J]. Retina, 2021, 41(5): 1047-1056. DOI: 10.1097/IAE.0000000000002997.
|
45. |
Zheng L, Pan A, Zhu S, et al. Posterior scleral contraction to treat recurrent or persistent macular detachment after previous vitrectomy in highly myopic eyes[J]. Retina, 2019, 39(1): 193‐201. DOI: 10.1097/IAE.0000000000002217.
|
46. |
Cao K, Wang J, Zhang J, et al. The effectiveness and safety of posterior scleral reinforcement with vitrectomy for myopic foveoschisis treatment: a systematic review and meta-analysis[J]. Graefe's Arch Clin Exp Ophthalmol, 2020, 258(2): 257-271. DOI: 10.1007/s00417-019-04550-5.
|