1. |
Baird PN, Saw SM, Lanca C, et al. Myopia[J/OL]. Nat Rev Dis Primers, 2020, 6(1): 99[2020/12/17]. https://pubmed.ncbi.nlm.nih.gov/33328468/. DOI: 10.1038/s41572-020-00231-4.
|
2. |
Wu H, Chen W, Zhao F, et al. Scleral hypoxia is a target for myopia control[J/OL]. Proc Natl Acad Sci USA, 2018, 115(30): E7091-7100[2018-07-24]. https://pubmed.ncbi.nlm.nih.gov/29987045/. DOI: 10.1073/pnas.1721443115.
|
3. |
Nickla DL, Wildsoet C, Wallman J. Compensation for spectacle lenses involves changes in proteoglycan synthesis in both the sclera and choroid[J]. Curr Eye Res, 1997, 16(4): 320-326. DOI: 10.1076/ceyr.16.4.320.10697.
|
4. |
Pendrak K, Papastergiou GI, Lin T, et al. Choroidal vascular permeability in visually regulated eye growth[J]. Exp Eye Res, 2000, 70(5): 629-637. DOI: 10.1006/exer.2000.0825.
|
5. |
Hirata A, Negi A. Morphological changes of choriocapillaris in experimentally induced chick myopia[J]. Graefe's Arch Clin Exp Ophthalmol, 1998, 236(2): 132-137. DOI: 10.1007/s004170050053.
|
6. |
Rymer J, Wildsoet CF. The role of the retinal pigment epithelium in eye growth regulation and myopia: a review[J]. Vis Neurosci, 2005, 22(3): 251-261. DOI: 10.1017/s0952523805223015.
|
7. |
Nickla DL, Wallman J. The multifunctional choroid[J]. Prog Retin Eye Res, 2010, 29(2): 144-168. DOI: 10.1016/j.preteyeres.2009.12.002.
|
8. |
Zou L, Liu R, Zhang X, et al. Upregulation of regulator of G-protein signaling 2 in the sclera of a form deprivation myopic animal model[J]. Mol Vis, 2014, 20: 977-987.
|
9. |
Wallman J, Gottlieb MD, Rajaram V, et al. Local retinal regions control local eye growth and myopia[J]. Science, 1987, 237(4810): 73-77. DOI: 10.1126/science.3603011.
|
10. |
Zhou X, Pardue MT, Iuvone PM, et al. Dopamine signaling and myopia development: What are the key challenges[J]. Prog Retin Eye Res, 2017, 61: 60-71. DOI: 10.1016/j.preteyeres.2017.06.003.
|
11. |
Huang F, Wang Q, Yan T, et al. The role of the dopamine D2 receptor in form-deprivation myopia in mice: studies with full and partial D2 receptor agonists and knockouts[J]. Invest Ophthalmol Vis Sci, 2020, 61(6): 47. DOI: 10.1167/iovs.61.6.47.
|
12. |
Nickla DL, Totonelly K, Dhillon B. Dopaminergic agonists that result in ocular growth inhibition also elicit transient increases in choroidal thickness in chicks[J]. Exp Eye Res, 2010, 91(5): 715-720. DOI: 10.1016/j.exer.2010.08.021.
|
13. |
董枫, 安建宏, 任岳萍, 等. 多巴胺D2受体和腺苷A2A受体在人视网膜色素上皮细胞表达的研究[J]. 中华眼科杂志, 2007, 43(12): 1110-1113. DOI: 10.3760/j.issn:0412-4081.2007.12.013.Dong F, An JH, Ren YP, et al. Expression of dopamine receptor D2 and adenosine receptor A2A in human retinal pigment epithelium[J]. Chin J Ophthalmol, 2007, 43(12): 1110-1113. DOI: 10.3760/j.issn:0412-4081.2007.12.013.
|
14. |
Kimura R, Okouchi M, Kato T, et al. Epidermal growth factor receptor transactivation is necessary for glucagon-like peptide-1 to protect PC12 cells from apoptosis[J]. Neuroendocrinology, 2013, 97(4): 300-308. DOI: 10.1159/000345529.
|
15. |
Yoon S, Baik JH. Dopamine D2 receptor-mediated epidermal growth factor receptor transactivation through a disintegrin and metalloprotease regulates dopaminergic neuron development via extracellular signal-related kinase activation[J]. J Biol Chem, 2013, 288(40): 28435-28446. DOI: 10.1074/jbc.M113.461202.
|
16. |
Jonas JB, Dong L, Da Chen S, et al. Intraocular epidermal growth factor concentration, axial length, and high axial myopia[J]. Graefe's Arch Clin Exp Ophthalmol, 2021, 259(11): 3229-3234. DOI: 10.1007/s00417-021-05200-5.
|
17. |
Dong L, Shi XH, Li YF, et al. Blockade of epidermal growth factor and its receptor and axial elongation in experimental myopia[J]. FASEB J, 2020, 34(10): 13654-13670. DOI: 10.1096/fj.202001095RR.
|
18. |
Jonas JB, Ohno-Matsui K, Jiang WJ, et al. Bruch membrane and the mechanism of myopization: a new theory[J]. Retina, 2017, 37(8): 1428-1440. DOI: 10.1097/iae.0000000000001464.
|
19. |
Jonas JB, Ohno-Matsui K, Holbach L, et al. Retinal pigment epithelium cell density in relationship to axial length in human eyes[J/OL]. Acta Ophthalmol, 2017, 95(1): e22-e28[2016-08-22].https://pubmed.ncbi.nlm.nih.gov/27545271/. DOI: 10.1111/aos.13188.
|
20. |
Yu M, Liu W, Wang B, et al. Short wavelength (blue) light is protective for lens-induced myopia in guinea pigs potentially through a retinoic acid-related mechanism[J]. Invest Ophthalmol Vis Sci, 2021, 62(1): 21. DOI: 10.1167/iovs.62.1.21.
|
21. |
Summers JA, Cano EM, Kaser-Eichberger A, et al. Retinoic acid synthesis by a population of choroidal stromal cells[J/OL]. Exp Eye Res, 2020, 201: 108252[2020-09-19].https://pubmed.ncbi.nlm.nih.gov/32961175/. DOI: 10.1016/j.exer.2020.108252.
|
22. |
Rada JA, Hollaway LR, Lam W, et al. Identification of RALDH2 as a visually regulated retinoic acid synthesizing enzyme in the chick choroid[J]. Invest Ophthalmol Vis Sci, 2012, 53(3): 1649-1662. DOI: 10.1167/iovs.11-8444.
|
23. |
Wang S, Liu S, Mao J, et al. Effect of retinoic acid on the tight junctions of the retinal pigment epithelium-choroid complex of guinea pigs with lens-induced myopia in vivo[J]. Int J Mol Med, 2014, 33(4): 825-832. DOI: 10.3892/ijmm.2014.1651.
|
24. |
Satoh T, Higuchi Y, Kawakami S, et al. Encapsulation of the synthetic retinoids Am80 and LE540 into polymeric micelles and the retinoids' release control[J]. J Control Release, 2009, 136(3): 187-195. DOI: 10.1016/j.jconrel.2009.02.024.
|
25. |
Ruan Y, Patzak A, Pfeiffer N, et al. Muscarinic acetylcholine receptors in the retina-therapeutic implications[J/OL]. Int J Mol Sci, 2021, 22(9): 4989[2021-05-09].https://pubmed.ncbi.nlm.nih.gov/34066677/. DOI: 10.3390/ijms22094989.
|
26. |
Gong Q, Janowski M, Luo M, et al. Efficacy and adverse effects of atropine in childhood myopia: a meta-analysis[J]. JAMA Ophthalmol, 2017, 135(6): 624-630. DOI: 10.1001/jamaophthalmol.2017.1091.
|
27. |
Lind GJ, Chew SJ, Marzani D, et al. Muscarinic acetylcholine receptor antagonists inhibit chick scleral chondrocytes[J]. Invest Ophthalmol Vis Sci, 1998, 39(12): 2217-2231.
|
28. |
Barathi VA, Beuerman RW. Molecular mechanisms of muscarinic receptors in mouse scleral fibroblasts: prior to and after induction of experimental myopia with atropine treatment[J/OL]. Mol Vis, 2011, 17: 680-692[2011-03-09]. https://pubmed.ncbi.nlm.nih.gov/21403852/.
|
29. |
Lin HJ, Wan L, Chen WC, et al. Muscarinic acetylcholine receptor 3 is dominant in myopia progression[J]. Invest Ophthalmol Vis Sci, 2012, 53(10): 6519-6525. DOI: 10.1167/iovs.11-9031.
|
30. |
Stone RA, Lin T, Laties AM. Muscarinic antagonist effects on experimental chick myopia[J]. Exp Eye Res, 1991, 52(6): 755-758. DOI: 10.1016/0014-4835(91)90027-c.
|
31. |
Cottriall CL, McBrien NA. The M1 muscarinic antagonist pirenzepine reduces myopia and eye enlargement in the tree shrew[J]. Invest Ophthalmol Vis Sci, 1996, 37(7): 1368-1379.
|
32. |
Cottriall CL, Truong HT, McBrien NA. Inhibition of myopia development in chicks using himbacine: a role for M(4) receptors?[J]. Neuroreport, 2001, 12(11): 2453-2456. DOI: 10.1097/00001756-200108080-00033.
|
33. |
McBrien NA, Arumugam B, Gentle A, et al. The M4 muscarinic antagonist MT-3 inhibits myopia in chick: evidence for site of action[J]. Ophthalmic Physiol Opt, 2011, 31(5): 529-539. DOI: 10.1111/j.1475-1313.2011.00841.x.
|
34. |
McBrien NA, Stell WK, Carr B. How does atropine exert its anti-myopia effects?[J]. Ophthalmic Physiol Opt, 2013, 33(3): 373-378. DOI: 10.1111/opo.12052.
|
35. |
Arumugam B, McBrien NA. Muscarinic antagonist control of myopia: evidence for M4 and M1 receptor-based pathways in the inhibition of experimentally-induced axial myopia in the tree shrew[J]. Invest Ophthalmol Vis Sci, 2012, 53(9): 5827-5837. DOI: 10.1167/iovs.12-9943.
|
36. |
Nickla DL, Zhu X, Wallman J. Effects of muscarinic agents on chick choroids in intact eyes and eyecups: evidence for a muscarinic mechanism in choroidal thinning[J]. Ophthalmic Physiol Opt, 2013, 33(3): 245-256. DOI: 10.1111/opo.12054.
|
37. |
张立华, 闫东升, 周翔天, 等. 毒蕈碱1型受体在人视网膜色素上皮细胞表达的研究[J]. 中华眼科杂志, 2006, 42(12): 1109-1112. DOI: 10.3760/j:issn:0412-4081.2006.12.011.Zhang LH, Yan DS, Zhou XT, et al. Expression of muscarinic acetylcholine receptor-1 in human retinal pigment epithelium[J]. Chin J Ophthalmol, 2006, 42(12): 1109-1112. DOI: 10.3760/j:issn:0412-4081.2006.12.011.
|
38. |
Beach KM, Hung LF, Arumugam B, et al. Adenosine receptor distribution in rhesus monkey ocular tissue[J]. Exp Eye Res, 2018, 174: 40-50. DOI: 10.1016/j.exer.2018.05.020.
|
39. |
Cui D, Trier K, Zeng J, et al. Adenosine receptor protein changes in guinea pigs with form deprivation myopia[J]. Acta Ophthalmol, 2010, 88(7): 759-765. DOI: 10.1111/j.1755-3768.2009.01559.x.
|
40. |
Cui D, Trier K, Zeng J, et al. Effects of 7-methylxanthine on the sclera in form deprivation myopia in guinea pigs[J]. Acta Ophthalmol, 2011, 89(4): 328-334. DOI: 10.1111/j.1755-3768.2009.01688.x.
|
41. |
Walline JJ, Lindsley KB, Vedula SS, et al. Interventions to slow progression of myopia in children[J/OL]. Cochrane Database Syst Rev, 2020, 1(1): CD004916[2020-01-13]. https://pubmed.ncbi.nlm.nih.gov/31930781/. DOI: 10.1002/14651858.CD004916.pub4.
|
42. |
Smith EL 3rd, Hung LF, She Z, et al. Topically instilled caffeine selectively alters emmetropizing responses in infant rhesus monkeys[J/OL]. Exp Eye Res, 2021, 203: 108438[2021/01/09]. https://pubmed.ncbi.nlm.nih.gov/33428866/. DOI: 10.1016/j.exer.2021.108438.
|
43. |
Liu H, Schaeffel F, Trier K, et al. Effects of 7-methylxanthine on deprivation myopia and retinal dopamine release in chickens[J]. Ophthalmic Res, 2020, 63(3): 347-357. DOI: 10.1159/000502529.
|