1. |
Bringmann A, Syrbe S, Görner K, et al. The primate fovea: structure, function and development[J]. Prog Retin Eye Res, 2018, 66: 49-84. DOI: 10.1016/j.preteyeres.2018.03.006.
|
2. |
Shibuya K, Tomohiro M, Sasaki S, et al. Characteristics of structures and lesions of the eye in laboratory animals used in toxicity studies[J]. J Toxicol Pathol, 2015, 28(4): 181-188. DOI: 10.1293/tox.2015-0037.
|
3. |
Warren WC, Harris RA, Haukness M, et al. Sequence diversity analyses of an improved rhesus macaque genome enhance its biomedical utility[J/OL]. Science, 2020, 370(6523): e6617[2020-12-18]. https://pubmed.ncbi.nlm.nih.gov/33335035/. DOI: 10.1126/science.abc6617.
|
4. |
Francis PJ, Appukuttan B, Simmons E, et al. Rhesus monkeys and humans share common susceptibility genes for age-related macular disease[J]. Hum Mol Genet, 2008, 17(17): 2673-2680. DOI: 10.1093/hmg/ddn167.
|
5. |
Wu KC, Lv JN, Yang H, et al. Nonhuman primate model of oculocutaneous albinism with TYR and OCA2 mutations[J/OL]. Research (Wash DC), 2020, 2020: 1658678[2020-03-11]. https://pubmed.ncbi.nlm.nih.gov/32259106/. DOI: 10.34133/2020/1658678.
|
6. |
Moshiri A, Chen R, Kim S, et al. A nonhuman primate model of inherited retinal disease[J]. J Clin Invest, 2019, 129(2): 863-874. DOI: 10.1172/JCI123980.
|
7. |
Uyhazi KE, Bennett J. Blinded by the light: a nonhuman primate model of achromatopsia[J]. J Clin Invest, 2019, 129(2): 513-515. DOI: 10.1172/JCI126205.
|
8. |
Ikeda Y, Nishiguchi KM, Miya F, et al. Discovery of a cynomolgus monkey family with retinitis pigmentosa[J]. Invest Ophthalmol Vis Sci, 2018, 59(2): 826-830. DOI: 10.1167/iovs.17-22958.
|
9. |
Peterson SM, McGill TJ, Puthussery T, et al. Bardet-Biedl syndrome in rhesus macaques: a nonhuman primate model of retinitis pigmentosa[J/OL]. Exp Eye Res, 2019, 189: 107825[2019-10-04]. https://pubmed.ncbi.nlm.nih.gov/31589838/. DOI: 10.1016/j.exer.2019.107825.
|
10. |
Yiu G, Tieu E, Munevar C, et al. In vivo multimodal imaging of drusenoid lesions in rhesus macaques[J/OL]. Sci Rep, 2017, 7(1): 15013[2017-11-03]. https://pubmed.ncbi.nlm.nih.gov/29101353/. DOI: 10.1038/s41598-017-14715-z.
|
11. |
Zeng B, Zhang H, Peng Y, et al. Spontaneous fundus lesions in elderly monkeys: an ideal model for age-related macular degeneration and high myopia clinical research[J/OL]. Life Sci, 2021, 282: 119811[2021-10-01]. https://pubmed.ncbi.nlm.nih.gov/34256039/. DOI: 10.1016/j.lfs.2021.119811.
|
12. |
Gouras P, Ivert L, Landauer N, et al. Drusenoid maculopathy in rhesus monkeys (Macaca mulatta): effects of age and gender[J]. Graefe's Arch Clin Exp Ophthalmol, 2008, 246(10): 1395-1402. DOI: 10.1007/s00417-008-0910-8.
|
13. |
Maloca PM, Freichel C, Hänsli C, et al. Cynomolgus monkey's choroid reference database derived from hybrid deep learning optical coherence tomography segmentation[J/OL]. Sci Rep, 2022, 12(1): 13276[2022-08-02]. https://pubmed.ncbi.nlm.nih.gov/35918392/. DOI: 10.1038/s41598-022-17699-7.
|
14. |
Winkler PA, Occelli LM, Petersen-Jones SM. Large animal models of inherited retinal degenerations: a review[J]. Cells, 2020, 9(4): 882. DOI: 10.3390/cells9040882.
|
15. |
Lin Q, Lv JN, Wu KC, et al. Generation of nonhuman primate model of cone dysfunction through in situ AAV-mediated CNGB3 ablation[J]. Mol Ther Methods Clin Dev, 2020, 18: 869-879. DOI: 10.1016/j.omtm.2020.08.007.
|
16. |
Li S, Hu Y, Li Y, et al. Generation of nonhuman primate retinitis pigmentosa model by in situ knockout of RHO in rhesus macaque retina[J]. Sci Bull (Beijing), 2021, 66(4): 374-385. DOI: 10.1016/j.scib.2020.09.008.
|
17. |
Ryu J, Statz JP, Chan W, et al. CRISPR/Cas9 editing of the MYO7A gene in rhesus macaque embryos to generate a primate model of usher syndrome type 1B[J/OL]. Sci Rep, 2022, 12(1): 10036[2022-06-16]. https://pubmed.ncbi.nlm.nih.gov/35710827/. DOI: 10.1038/s41598-022-13689-x.
|
18. |
Teo KYC, Lee SY, Barathi AV, et al. Surgical removal of internal limiting membrane and layering of AAV vector on the retina under air enhances gene transfection in a nonhuman primate[J]. Invest Ophthalmol Vis Sci, 2018, 59(8): 3574-3583. DOI: 10.1167/iovs.18-24333.
|
19. |
Gao G, He L, Liu S, et al. Establishment of a rapid lesion-controllable retinal degeneration monkey model for preclinical stem cell therapy[J/OL]. Cells, 2020, 9(11): 2468[2022-11-13]. https://pubmed.ncbi.nlm.nih.gov/33202702/. DOI: 10.3390/cells9112468.
|
20. |
Shirai H, Mandai M, Matsushita K, et al. Transplantation of human embryonic stem cell-derived retinal tissue in two primate models of retinal degeneration[J/OL]. Proc Natl Acad Sci USA, 2016, 113(1): E81-90[2016-01-05]. https://pubmed.ncbi.nlm.nih.gov/26699487/. DOI: 10.1073/pnas.1512590113.
|
21. |
Lingam S, Liu Z, Yang B, et al. cGMP-grade human iPSC-derived retinal photoreceptor precursor cells rescue cone photoreceptor damage in non-human primates[J]. Stem Cell Res Ther, 2021, 12(1): 464. DOI: 10.1186/s13287-021-02539-8.
|
22. |
Ou Q, Zhu T, Li P, et al. Establishment of retinal degeneration model in rat and monkey by intravitreal injection of sodium iodate[J]. Curr Mol Med, 2018, 18(6): 352-364. DOI: 10.2174/1566524018666181113104023.
|
23. |
Tu HY, Watanabe T, Shirai H, et al. Medium- to long-term survival and functional examination of human iPSC-derived retinas in rat and primate models of retinal degeneration[J]. EBioMedicine, 2019, 39: 562-574. DOI: 10.1016/j.ebiom.2018.11.028.
|
24. |
Liu YV, Konar G, Aziz K, et al. Localized structural and functional deficits in a nonhuman primate model of outer retinal atrophy[J]. Invest Ophthalmol Vis Sci, 2021, 62(13): 8. DOI: 10.1167/iovs.62.13.8.
|
25. |
Strazzeri JM, Hunter JJ, Masella BD, et al. Focal damage to macaque photoreceptors produces persistent visual loss[J]. Exp Eye Res, 2014, 119: 88-96. DOI: 10.1016/j.exer.2013.11.001.
|
26. |
Dhakal KR, Walters S, McGregor JE, et al. Localized photoreceptor ablation using femtosecond pulses focused with adaptive optics[J]. Transl Vis Sci Technol, 2020, 9(7): 16. DOI: 10.1167/tvst.9.7.16.
|
27. |
Rajagopalan L, Ghosn C, Tamhane M, et al. A nonhuman primate model of blue light-induced progressive outer retina degeneration showing brimonidine drug delivery system-mediated cyto- and neuroprotection[J/OL]. Exp Eye Res, 2021, 209: 108678[2019-06-19]. https://pubmed.ncbi.nlm.nih.gov/34153289/. DOI: 10.1016/j.exer.2021.108678.
|
28. |
Cheong KX, Barathi VA, Teo KYC, et al. Choroidal and retinal changes after systemic adrenaline and photodynamic therapy in non-human primates[J]. Invest Ophthalmol Vis Sci, 2021, 62(3): 25. DOI: 10.1167/iovs.62.3.25.
|
29. |
Fabian-Jessing BK, Jakobsen TS, Jensen EG, et al. Animal models of choroidal neovascularization: a systematic review[J]. Invest Ophthalmol Vis Sci, 2022, 63(9): 11. DOI: 10.1167/iovs.63.9.11.
|
30. |
Lukason M, DuFresne E, Rubin H, et al. Inhibition of choroidal neovascularization in a nonhuman primate model by intravitreal administration of an AAV2 vector expressing a novel anti-VEGF molecule[J]. Mol Ther, 2011, 19(2): 260-265. DOI: 10.1038/mt.2010.230.
|
31. |
Liu Z, Ilmarinen T, Tan GSW, et al. Submacular integration of hESC-RPE monolayer xenografts in a surgical non-human primate model[J]. Stem Cell Res Ther, 2021, 12(1): 423. DOI: 10.1186/s13287-021-02395-6.
|
32. |
Seah I, Liu Z, Soo Lin Wong D, et al. Retinal pigment epithelium transplantation in a non-human primate model for degenerative retinal diseases[J/OL]. J Vis Exp, 2021, 1(172): E1[2021-06-14]. https://pubmed.ncbi.nlm.nih.gov/34180899/. DOI: 10.3791/62638.
|
33. |
Thieltges F, Liu Z, Brinken R, et al. Localized RPE removal with a novel instrument aided by viscoelastics in rabbits[J]. Transl Vis Sci Technol, 2016, 5(3): 11. DOI: 10.1167/tvst.5.3.11.
|