1. |
Boden MA. Artificial intelligence[M]. San Diego: Elsevier, 1996: 15-17.
|
2. |
Russell SJ. Artificial intelligence a modern approach[M]. New York: Pearson Education, 2010: 1.
|
3. |
LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. DOI: 10.1038/nature14539.
|
4. |
Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 546(7660): 686-686. DOI: 10.1038/nature22985.
|
5. |
Cheung CY, Ran AR, Wang S, et al. A deep learning model for detection of Alzheimer's disease based on retinal photographs: a retrospective, multicentre case-control study[J/OL]. Lancet Digit Health, 2022, 4(11): e806-e815[2022-09-30]. https://pubmed.ncbi.nlm.nih.gov/36192349/. DOI: 10.1016/S2589-7500(22)00169-8.
|
6. |
Liu GP, Yan JJ, Wang YQ, et al. Deep learning based syndrome diagnosis of chronic gastritis[J/OL]. Comput Math Methods Med, 2014, 2014: 938350[2014-03-05]. https://pubmed.ncbi.nlm.nih.gov/24734118/. DOI: 10.1155/2014/938350.
|
7. |
Zhang Y, Wang L, Wu Z, et al. Development of an automated screening system for retinopathy of prematurity using a deep neural network for wide-angle retinal images[J]. IEEE Access, 2019, 7: 10232-10241. DOI: 10.1109/access.2018.2881042.
|
8. |
Zhang S, Zheng R, Luo Y, et al. Simultaneous arteriole and venule segmentation of dual-modal fundus images using a multi-task cascade network[J]. IEEE Access, 2019, 7: 57561-57573. DOI: 10.1109/access.2019.2914319.
|
9. |
Bourne RRA, Flaxman SR, Braithwaite T, et al. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis[J/OL]. The Lancet Global Health, 2017, 5(9): e888-e897[2017-08-02]. https://pubmed.ncbi.nlm.nih.gov/28779882/. DOI: 10.1016/s2214-109x(17)30293-0.
|
10. |
Resnikoff S, Lansingh VC, Washburn L, et al. Estimated number of ophthalmologists worldwide (international council of ophthalmology update): will we meet the needs?[J]. Br J Ophthalmol, 2020, 104(4): 588-592. DOI: 10.1136/bjophthalmol-2019-314336.
|
11. |
Teo ZL, Tham YC, Yu M, et al. Do we have enough ophthalmologists to manage vision-threatening diabetic retinopathy? A global perspective[J]. Eye, 2020, 34(7): 1255-1261. DOI: 10.1038/s41433-020-0776-5.
|
12. |
宁艳阳. 中国眼科发展变局中开新局[J]. 中国卫生, 2020, 1(10): 102-104. DOI: 10.15973/j.cnki.cn11-3708/d.2020.10.042.Ning YY. Opening new chapter in the changing landscape of ophthalmology development in China[J]. China Health, 2020, 1(10): 102-104. DOI: 10.15973/j.cnki.cn11-3708/d.2020.10.042.
|
13. |
Ahuja AS, Wagner IV, Dorairaj S, et al. Artificial intelligence in ophthalmology: a multidisciplinary approach[J/OL]. Integr Med Res, 2022, 11(4): 100888[2022-09-20]. https://pubmed.ncbi.nlm.nih.gov/36212633/. DOI: 10.1016/j.imr.2022.100888.
|
14. |
Goutam B, Hashmi MF, Geem ZW, et al. A comprehensive review of deep learning strategies in retinal disease diagnosis using fundus images[J]. IEEE Access, 2022, 10: 57796-57823. DOI: 10.1109/access.2022.3178372.
|
15. |
Chiang MF, Quinn GE, Fielder AR, et al. International classification of retinopathy of prematurity, third edition[J/OL]. Ophthalmology, 2021, 128(10): e51-e68[2021-07-08]. https://pubmed.ncbi.nlm.nih.gov/34247850/. DOI: 10.1016/j.ophtha.2021.05.031.
|
16. |
黎彪, 丁雅珺, 邵毅. 人工智能在小儿眼科领域的应用研究进展[J]. 国际眼科杂志, 2020, 20(8): 1363-1366. DOI: 10.3980/j.issn.1672-5123.2020.8.14.Li B, Ding YJ, Shao Y. Research progress on application of artificial intelligence in pediatric ophthalmology[J]. Int Eye Sci, 2020, 20(8): 1363-1366. DOI: 10.3980/j.issn.1672-5123.2020.8.14.
|
17. |
王慧冉. 早产儿视网膜病变发生及筛查现状[J]. 中国妇幼卫生杂志, 2022, 13(2): 1-5. DOI: 10.19757/j.cnki.issn1674-7763.2022.02.001.Wang HR. Status of the occurrence and screening of retinopathy of prematurity[J]. Chin J Women Child Health, 2022, 13(2): 1-5. DOI: 10.19757/j.cnki.issn1674-7763.2022.02.001.
|
18. |
Ells AL, Holmes JM, Astle WF, et al. Telemedicine approach to screening for severe retinopathy of prematurity: a pilot study[J]. Ophthalmology, 2003, 110(11): 2113-2117. DOI: 10.1016/S0161-6420(03)00831-5.
|
19. |
Fijalkowski N, Zheng LL, Henderson MT, et al. Stanford University network for diagnosis of retinopathy of prematurity (SUNDROP): five years of screening with telemedicine[J]. Ophthalmic Surg Lasers Imaging Retina, 2014, 45(2): 106-113. DOI: 10.3928/23258160-20140122-01.
|
20. |
杨玉微, 云东源, 李龙辉, 等. 眼科人工智能在远程医疗中的应用[J]. 眼科学报, 2022, 37(3): 238-244. DOI: 10.3978/j.issn.1000-4432.2022.03.05.Yang YW, Yun DY, Li LH, et al.Application of ophthalmic artificial intelligence in telemedicine[J]. Eye Science, 2022, 37(3): 238-244. DOI: 10.3978/j.issn.1000-4432.2022.03.05.
|
21. |
Wang J, Ju R, Chen Y, et al. Automated retinopathy of prematurity screening using deep neural networks[J]. EBioMedicine, 2018, 35: 361-368. DOI: 10.1016/j.ebiom.2018.08.033.
|
22. |
Moshfeghi DM, Trese MT. Reducing blindness resulting from retinopathy of prematurity using deep learning[J]. Ophthalmology,2021, 128(7): 1077-1078. DOI: 10.1016/j.ophtha.2021.04.028.
|
23. |
陈亦棋, 祝晨婷, 沈丽君, 等. 早产儿视网膜病变远程筛查的有效性评估[J]. 中华眼底病杂志, 2017, 33(6): 633-634. DOI: 10.3760/cma.j.issn.1005-1015.2017.06.019.Chen YQ, Zhu CT, Shen LJ, et al. Assessment of the effectiveness of remote screening for retinopathy of prematurity in preterm infants[J]. Chin J Ocul Fundus Dis, 2017, 33(6): 633-634. DOI: 10.3760/cma.j.issn.1005-1015.2017.06.019.
|
24. |
曲佳, 朱敏, 田丽丽, 等. 美国远程医疗系统建设及对我国的启示[J]. 中国急救复苏与灾害医学杂志, 2022, 17(7): 883-886. DOI: 10.3969/j.issn.1673-6966.2022.07.010.Qu J, Zhu M, Tian LL, et al. Construction and enlightenment of US telemedicine system[J]. Chin J Emerg Resusc Disaster Med, 2022, 17(7): 883-886. DOI: 10.3969/j.issn.1673-6966.2022.07.010.
|
25. |
Rathi S, Tsui E, Mehta N, et al. The current state of teleophthalmology in the United States[J]. Ophthalmology, 2017, 124(12): 1729-1734. DOI: 10.1016/j.ophtha.2017.05.026.
|
26. |
Wittenberg LA, Jonsson NJ, Chan RV, et al. Computer-based image analysis for plus disease diagnosis in retinopathy of prematurity[J]. J Pediatr Ophthalmol Strabismus, 2012, 49(1): 11-19. DOI: 10.3928/01913913-20110222-01.
|
27. |
Nisha KL, Sathidevi PS. A computer-aided diagnosis system for plus disease in retinopathy of prematurity with structure adaptive segmentation and vessel based features[J]. Comput Med Imaging Graph, 2019, 74: 72-94. DOI: 10.1016/j.compmedimag.2019.04.003.
|
28. |
Huang YP, Vadloori S, Chu HC, et al. Deep learning models for automated diagnosis of retinopathy of prematurity in preterm infants[J]. Electronics, 2020, 9(9): 1444. DOI: 10.3390/electronics9091444.
|
29. |
Tong Y, Lu W, Deng QQ, et al. Automated identification of retinopathy of prematurity by image-based deep learning[J]. Eye Vis (Lond), 2020, 7: 40. DOI: 10.1186/s40662-020-00206-2.
|
30. |
Brown JM, Campbell JP, Beers A, et al. Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks[J]. JAMA Ophthalmol, 2018, 136(7): 803-810. DOI: 10.1001/jamaophthalmol.2018.1934.
|
31. |
Hu J, Chen Y, Zhong J, et al. Automated analysis for retinopathy of prematurity by deep neural networks[J]. IEEE Trans Med Imaging, 2019, 38(1): 269-279. DOI: 10.1109/TMI.2018.2863562.
|
32. |
Attallah O. DIAROP: automated deep learning-based diagnostic tool for retinopathy of prematurity[J/OL]. Diagnostics (Basel), 2021, 11(11): 2034[2021-11-03]. https://pubmed.ncbi.nlm.nih.gov/34829380/. DOI: 10.3390/diagnostics11112034.
|
33. |
Lei B, Zeng X, Huang S, et al. Automated detection of retinopathy of prematurity by deep attention network[J]. Multimedia Tools Appl, 2021, 80(30): 36341-36360. DOI: 10.1007/s11042-021-11208-0.
|
34. |
Chen S, Zhang R, Chen G, et al. Attention-guided deep multi-instance learning for staging retinopathy of prematurity[C/OL]//2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), 2021: 1025-1028, Nice, France, 2021[2021-04-01]. https://biomedicalimaging.org/2021.
|
35. |
Li X, Wan W, Zhou Y, et al. Deep multiple instance learning with spatial attention for ROP case classification, instance selection and abnormality localization[C/OL]//2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 2021[2021-01-15]. https://www.micc.unifi.it/icpr2020.
|
36. |
Kimyon S, Mete A. Comparison of Bevacizumab and Ranibizumab in the treatment of type 1 retinopathy of prematurity affecting zone 1[J]. Ophthalmologica, 2018, 240(2): 99-105. DOI: 10.1159/000489023.
|
37. |
Zhao J, Lei B, Wu Z, et al. A deep learning framework for identifying zone I in retcam images[J]. IEEE Access, 2019, 7: 103530-103537. DOI: 10.1109/access.2019.2930120.
|
38. |
Peng Y, Zhu W, Chen F, et al. Automated zone recognition for retinopathy of prematurity using deep neural network with attention mechanism and deep supervision strategy[C/OL]//Medical Imaging 2021: Image Processing, California, United States, 2021[2021-02-01]. https://www.spiedigitallibrary.org/conference-proceedings-of-SPIE/11596.toc.
|
39. |
Agrawal R, Kulkarni S, Walambe R, et al. Assistive framework for automatic detection of all the zones in retinopathy of prematurity using deep learning[J]. J Digit Imaging, 2021, 34(4): 932-947. DOI: 10.1007/s10278-021-00477-8.
|
40. |
Redd TK, Campbell JP, Brown JM, et al. Evaluation of a deep learning image assessment system for detecting severe retinopathy of prematurity[J/OL]. Br J Ophthalmol, 2018, 23: bjophthalmol-2018-313156[2018-11-23]. https://pubmed.ncbi.nlm.nih.gov/30470715/. DOI: 10.1136/bjophthalmol-2018-313156.
|
41. |
Taylor S, Brown JM, Gupta K, et al. Monitoring disease progression with a quantitative severity scale for retinopathy of prematurity using deep learning[J]. JAMA Ophthalmol, 2019, 137(9): 1022-1028. DOI: 10.1001/jamaophthalmol.2019.2433.
|
42. |
Gupta K, Campbell JP, Taylor S, et al. A quantitative severity scale for retinopathy of prematurity using deep learning to monitor disease regression after treatment[J]. JAMA Ophthalmol, 2019, 137(9): 1029-1036. DOI: 10.1001/jamaophthalmol.2019.2442.
|
43. |
Greenwald MF, Danford ID, Shahrawat M, et al. Evaluation of artificial intelligence-based telemedicine screening for retinopathy of prematurity[J]. J AAPOS, 2020, 24(3): 160-162. DOI: 10.1016/j.jaapos.2020.01.014.
|
44. |
Campbell JP, Singh P, Redd TK, et al. Applications of artificial intelligence for retinopathy of prematurity screening[J/OL]. Pediatrics, 2021, 147(3): e2020016618[2021-03-01]. https://pubmed.ncbi.nlm.nih.gov/33637645/. DOI: 10.1542/peds.2020-016618.
|
45. |
Campbell JP, Chiang MF, Chen JS, et al. Artificial intelligence for retinopathy of prematurity: validation of a vascular severity scale against international expert diagnosis[J/OL]. Ophthalmology, 2022, 129(7): e69-e76[2022-02-12]. https://pubmed.ncbi.nlm.nih.gov/35157950/. DOI: 10.1016/j.ophtha.2022.02.008.
|
46. |
唐志强. 智能医学影像的发展现状和挑战[J]. 现代医药卫生, 2020, 36(17): 2754-2757. DOI: 10.3969/j.issn.1009-5519.2020.17.028.Tang ZQ. Current state and challenges of intelligent medical imaging: a review[J]. J Mod Med Health, 2020, 36(17): 2754-2757. DOI: 10.3969/j.issn.1009-5519.2020.17.028.
|
47. |
赵悦. 医疗人工智能准入标准研究[D] 武汉: 华中科技大学, 2021.Zhao Y. A dissertation submitted in partial fulfilment of the requirements for the degree of master of library and information studies[D]. Wuhan: Huazhong University of Science and Technology, 2021.
|
48. |
van der Heijden AA, Abramoff MD, Verbraak F, et al. Validation of automated screening for referable diabetic retinopathy with the IDx-DR device in the Hoorn Diabetes Care System[J]. Acta Ophthalmol, 2018, 96(1): 63-68. DOI: 10.1111/aos.13613.
|
49. |
谢俊祥, 张琳, 李勇. 欧盟医疗人工智能相关战略形成路径及启示[J]. 中国医疗器械信息, 2020, 26(3): 28-31. DOI: 10.15971/j.cnki.cmdi.2020.03.014.Xie JX, Zhang L, Li Y. The formation path and enlightenment of EU medical artificial intelligence related strategies[J]. China Medical Device Information, 2020, 26(3): 28-31. DOI: 10.15971/j.cnki.cmdi.2020.03.014.
|
50. |
网信军民融合编辑部. 工信部权威解读《促进新一代人工智能产业发展三年行动计划(2018-2020年)》[J]. 网信军民融合, 2018, 3(3): 58-59.Network Information Military-Civilian Integration Editorial Department. Authoritative interpretation by the Ministry of Industry and Information Technology: three-year action plan (2018-2020) for promoting the development of next-generation artificial intelligence industry[J]. Civil-Military Integration on Cyberspace, 2018, 3(3): 58-59.
|
51. |
王亚星, 薛灿灿, 李建军. 眼科人工智能研究存在的主要问题及对策[J]. 眼科, 2021, 30(2): 81-84. DOI: 10.13281/j.cnki.issn.1004-4469.2021.02.001.Wang YX, Xue CC, Li JJ. Main problems and countermeasures of ophthalmic artificial intelligence research[J]. Ophthalmol CHN, 2021, 30(2): 81-84. DOI: 10.13281/j.cnki.issn.1004-4469.2021.02.001.
|
52. |
Graziani M, Andrearczyk V, Marchand-Maillet S, et al. Concept attribution: explaining CNN decisions to physicians[J/OL]. Comput Biol Med, 2020, 123: 103865[2020-06-17]. https://pubmed.ncbi.nlm.nih.gov/32658785/. DOI: 10.1016/j.compbiomed.2020.103865.
|
53. |
Mao J, Luo Y, Liu L, et al. Automated diagnosis and quantitative analysis of plus disease in retinopathy of prematurity based on deep convolutional neural networks[J/OL]. Acta Ophthalmol, 2020, 98(3): e339-e345[2019-09-27]. https://pubmed.ncbi.nlm.nih.gov/31559701/. DOI: 10.1111/aos.14264.
|
54. |
Ramachandran S, Niyas P, Vinekar A, et al. A deep learning framework for the detection of plus disease in retinal fundus images of preterm infants[J]. Biocybern Biomed Eng, 2021, 41(2): 362-375. DOI: 10.1016/j.bbe.2021.02.005.
|
55. |
季冰, 刘伶俐. 人工智能在医学影像领域的应用与挑战[J]. 中国医学伦理学, 2019, 32(8): 981-985. DOI: 10.12026/j.issn.1001-8565.2019.08.06.Ji B, Liu LL. Application and challenge of artificial intelligence in medical imaging[J]. Chinese Medical Ethics, 2019, 32(8): 981-985. DOI: 10.12026/j.issn.1001-8565.2019.08.06.
|
56. |
Wang X, Zhang S, Liang X, et al. A cnn-based retinal image quality assessment system for teleophthalmology[J/OL]. J Mech Med Biol, 2019, 19(5): 1950030[2019-07-17]. https://www.worldscientific.com/doi/epdf/10.1142/S0219519419500301. DOI: 10.1142/s0219519419500301.
|
57. |
Wintergerst MWM, Jansen LG, Holz FG, et al. Smartphone-based fundus imaging-where are we now?[J]. Asia Pac J Ophthalmol (Phila), 2020, 9(4): 308-314. DOI: 10.1097/APO.000000 0000000303.
|
58. |
Lin SJ, Yang CM, Yeh PT, et al. Smartphone fundoscopy for retinopathy of prematurity[J]. Taiwan J Ophthalmol, 2014, 4(2): 82-85. DOI: 10.1016/j.tjo.2014.04.001.
|
59. |
Rajalakshmi R, Subashini R, Anjana RM, et al. Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence[J]. Eye (Lond), 2018, 32(6): 1138-1144. DOI: 10.1038/s41433-018-0064-9.
|
60. |
Goyal A, Gopalakrishnan M, Anantharaman G, et al. Smartphone guided wide-field imaging for retinopathy of prematurity in neonatal intensive care unit-a Smart ROP (SROP) initiative[J]. Indian J Ophthalmol, 2019, 67(6): 840-845. DOI: 10.4103/ijo.IJO_1177_18.
|