1. |
GBD 2019 Blindness and Vision Impairment Collaborators, Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the right to sight: an analysis for the global burden of disease study[J/OL]. Lancet Glob Health, 2021, 9(2): e144-e160[2020-12-01]. https://pubmed.ncbi.nlm.nih.gov/33275949/. DOI: 10.1016/S2214-109X(20)30489-7.
|
2. |
Jabs DA, Rosenbaum JT, Foster CS, et al. Guidelines for the use of immunosuppressive drugs in patients with ocular inflammatory disorders: recommendations of an expert panel[J]. Am J Ophthalmol, 2000, 130(4): 492-513. DOI: 10.1016/s0002-9394(00)00659-0.
|
3. |
Rice JB, White AG, Scarpati LM, et al. Long-term systemic corticosteroid exposure: a systematic literature review[J]. Clin Ther, 2017, 39(11): 2216-2229. DOI: 10.1016/j.clinthera.2017.09.011.
|
4. |
Touhami S, Diwo E, Sève P, et al. Expert opinion on the use of biological therapy in non-infectious uveitis[J]. Expert Opin Biol Ther, 2019, 19(5): 477-490. DOI: 10.1080/14712598.2019.1595578.
|
5. |
Feiler DL, Srivastava SK, Pichi F, et al. Resolution of noninfectious uveitic cystoid macular edma with topical difluprednate[J]. Retina, 2017, 37(5): 844-850. DOI: 10.1097/IAE.0000000000001243.
|
6. |
Shulman S, Jóhannesson G, Stefánsson E, et al. Topical dexamethasone-cyclodextrin nanoparticle eye drops for non-infectious uveitic macular oedema and vitritis-a pilot study[J]. Acta Ophthalmol, 2015, 93(5): 411-415. DOI: 10.1111/aos.12744.
|
7. |
Yakin M, Kumar A, Kodati S, et al. Risk of elevated intraocular pressure with difluprednate in patients with non-infectious uveitis[J]. Am J Ophthalmol, 2022, 240: 232-238. DOI: 10.1016/j.ajo.2022.03.026.
|
8. |
Ciulla TA, Hussain RM, Pollack JS, et al. Visual acuity outcomes and anti-vascular endothelial growth factor therapy intensity in neovascular age-related macular degeneration patients: a real-world analysis of 49485 eyes[J]. Ophthalmol Retin, 2020, 4(1): 19-30. DOI: 10.1016/j.oret.2019.05.017.
|
9. |
Boyer DS, Yoon YH, Belfort R, et al. Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema[J]. Ophthalmology, 2014, 121(10): 1904-1914. DOI: 10.1016/j.ophtha.2014.04.024.
|
10. |
Wells JA, Glassman AR, Ayala AR, et al. Ablibercept, Bevacizumab, or Ranibizumab for diabetic macular edema: two-year results from a comparative effectiveness randomized clinical trial[J]. Ophthalmology, 2016, 123(6): 1351-1359. DOI: 10.1016/j.ophtha.2016.02.022.
|
11. |
Multicenter Uveitis Steroid Treatment (MUST) Trial Research Group, Kempen JH, Altaweel MM, et al. Benefits of systemic anti-inflammatory therapy versus fluocinolone acetonide intraocular implant for intermediate uveitis, posterior uveitis, and panuveitis: fifty-four-month results of the multicenter uveitis steroid treatment (MUST) trial and follow-up study[J]. Ophthalmology, 2015, 122(10): 1967-1975. DOI: 10.1016/j.ophtha.2015.06.042.
|
12. |
Koc H, Alpay A, Ugurbas SH. Comparison of the efficacy of intravitreal anti-VEGF versus intravitreal dexamethasone implant in treatment resistant diabetic macular edema[J]. BMC Ophthalmol, 2023, 23(1): 97. DOI: 10.1186/s12886-023-02831-6.
|
13. |
Johnson CJ, Berglin L, Chrenek MA, et al. Technical brief: subretinal injection and electroporation into adult mouse eyes[J]. Mol Vis, 2008, 14: 2211-2226.
|
14. |
Kumagai K, Ogino N, Fukami M, et al. Removal of foveal hard exudates by subretinal balanced salt solution injection using 38-gauge needle in diabetic patients[J]. Graefe's Arch Clin Exp Ophthalmol, 2020, 258(9): 1893-1899. DOI: 10.1007/s00417-020- 04756-y. DOI: 10.1007/s00417-020-04756-y.
|
15. |
Hussain RM, Tran KD, Maguire AM, et al. Subretinal injection of voretigene neparvovec-rzyl in a patient with RPE65-associated Leber's congenital amaurosis[J]. Ophthalmic Surg Lasers Imaging Retina, 2019, 50(10): 661-663. DOI: 10.3928/23258160-20191009-01.
|
16. |
Spaide RF, Koizumi H, Pozonni MC. Enhanced depth imaging spectral-domain optical coherence tomography[J]. Am J Ophthalmol, 2008, 146(4): 496-500. DOI: 10.1016/j.ajo.2008.05.032.
|
17. |
Rahman W, Chen FK, Yeoh J, et al. Repeatability of manual subfoveal choroidal thickness measurements in healthy subjects using the technique of enhanced depth imaging optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 2011, 52(5): 2267-2271. DOI: 10.1167/iovs.10-6024.
|
18. |
Yeh S, Ciulla T. Suprachoroidal triamcinolone acetonide injectable suspension for macular edema associated with noninfectious uveitis: an in-depth look at efficacy and safety[J]. Am J Manag Care, 2023, 29(2 Suppl): S19-28. DOI: 10.37765/ajmc.2023.89324.
|
19. |
Patel SR, Berezovsky DE, McCarey BE, et al. Targeted administration into the suprachoroidal space using a microneedle for drug delivery to the posterior segment of the eye[J]. Invest Ophthalmol Vis Sci, 2012, 53(8): 4433-4441. DOI: 10.1167/iovs.12-9872.
|
20. |
Yeh S, Khurana RN, Shah M, et al. Efficacy and safety of suprachoroidal CLS-TA for macular edema secondary to noninfectious uveitis: phase 3 randomized trial[J]. Ophthalmology, 2020, 127(7): 948-955. DOI: 10.1016/j.ophtha.2020.01.006.
|
21. |
Wykoff CC, Khurana RN, Lampen SIR, et al. Suprachoroidal triamcinolone acetonide for diabetic macular edema: the HULK trial[J]. Ophthalmol Retina, 2018, 2(8): 874-877. DOI: 10.1016/j.oret. 2018.03.008. DOI: 10.1016/j.oret.2018.03.008.
|
22. |
Campochiaro PA, Wykoff CC, Brown DM, et al. Suprachoroidal triamcinolone acetonide for retinal vein occlusion: results of the tanzanite study[J]. Ophthalmol Retina, 2018, 2(4): 320-328. DOI: 10.1016/j.oret.2017.07.013.
|
23. |
Einmahl S, Savoldelli M, D'Hermies F, et al. Evaluation of a novel biomaterial in the suprachoroidal space of the rabbit eye[J] Invest Ophthalmol Vis Sci, 2002, 43(5): 1533-1539.
|
24. |
Olsen TW, Feng X, Wabner K, et al. Cannulation of the suprachoroidal space: a novel drug delivery methodology to the posterior segment[J]. Am J Ophthalmol, 2006, 142(5): 777-877. DOI: 10.1016/j.ajo.2006.05.045.
|
25. |
Seiler GS, Salmon JH, Mantuo R, et al. Effect and distribution of contrast medium after injection into the anterior suprachoroidal space in ex vivo eyes[J]. Invest Ophthalmol Vis Sci, 2011, 52(8): 5730-5736. DOI: 10.1167/iovs.11-7525.
|
26. |
de Smet MD, Lynch JL, Dejneka NS, et al. A subretinal cell delivery method via suprachoroidal access in minipigs: safety and surgical outcomes[J]. Invest Ophthalmol Vis Sci, 2018, 59(1): 311-320. DOI: 10.1167/iovs.17-22233.
|
27. |
Tetz M, Rizzo S, Augustin AJ. Safety of submacular suprachoroidal drug administration via a microcatheter: retrospective analysis of European treatment results[J]. Ophthalmologica, 2012, 227(4): 183-189. DOI: 10.1159/000336045.
|
28. |
Rizzo S, Ebert FG, Bartolo ED, et al. Suprachoroidal drug infusion for the treatment of severe subfoveal hard exudates[J]. Retina, 2012, 32(4): 776-784. DOI: 10.1097/IAE.0b013e3182278b0e.
|
29. |
Gu B, Liu J, Li X, et al. Real-time monitoring of suprachoroidal space (SCS) following SCS injection using ultra-high resolution optical coherence tomography in guinea pig eyes[J]. Invest Ophthalmol Vis Sci, 2015, 56(6): 3623-3634. DOI: 10.1167/iovs.15-16597.
|
30. |
Touchard E, Berdugo M, Bigey P, et al. Suprachoroidal electrotransfer: a nonviral gene delivery method to transfect the choroid and the retina without detaching the retina[J]. Mol Ther, 2012, 20(8): 1559-1570. DOI: 10.1038/mt.2011.304.
|
31. |
Muya L, Kansara V, Cavet ME, et al. Suprachoroidal injection of triamcinolone acetonide suspension: ocular pharmacokinetics and distribution in rabbits demonstrates high and durable levels in the chorioretina[J]. J Ocul Pharmacol Ther, 2022, 38(6): 459-467. DOI: 10.1089/jop.2021.0090.
|
32. |
Gilger BC, Wilkie DA, Clode AB, et al. Long-term outcome after implantation of a suprachoroidal cyclosporine drug delivery device in horses with recurrent uveitis[J]. Vet Ophthalmol, 2010, 13(5): 294-300. DOI: 10.1111/j.1463-5224.2010.00807.x.
|
33. |
Jung JH, Kim SS, Chung H, et al. Six-month sustained delivery of anti-VEGF from in-situ forming hydrogel in the suprachoroidal space[J]. J Control Release, 2022, 352: 472-484. DOI: 10.1016/j.jconrel.2022.10.036.
|
34. |
Chiang B, Jung JH, Prausnitz MR. The suprachoroidal space as a route of administration to the posterior segment of the eye[J]. Adv Drug Deliv Rev, 2018, 126: 58-66. DOI: 10.1016/j.addr.2018.03.001.
|
35. |
Gilger BC, Abarca EM, Salmon JH, et al. Treatment of acute posterior uveitis in a porcine model by injection of triamcinolone acetonide into the suprachoroidal space using microneedles[J]. Invest Ophthalmol Vis Sci, 2013, 54(4): 2483-2492. DOI: 10.1167/iovs.13-11747.
|
36. |
Kim YC, Edelhauser HF, Prausnitz MR. Particle-stabilized emulsion droplets for gravity-mediated targeting in the posterior segment of the eye[J]. Adv Healthc Mater, 2014, 3(8): 1272-1282. DOI: 10.1002/adhm.201300696.
|
37. |
Olsen TW, Feng X, Wabner K, et al. Pharmacokinetics of pars plana intravitreal injections versus microcannula suprachoroidal injections of Bevacizumab in a porcine model[J]. Invest Ophthalmol Vis Sci, 2011, 52(7): 4749-4756. DOI: 10.1167/iovs.10-6291.
|
38. |
Jung JH, Desit P, Prausnitz MR. Targeted drug delivery in the suprachoroidal space by swollen hydrogel pushing[J]. Invest Ophthalmol Vis Sci, 2018, 59(5): 2069-2079. DOI: 10.1167/iovs.17-23758.
|
39. |
Jung JH, Chiang B, Grossniklaus HE, et al. Ocular drug delivery targeted by iontophoresis in the suprachoroidal space using a microneedle[J]. J Control Release, 2018, 277: 14-22. DOI: 10.1016/j.jconrel.2018.03.001.
|
40. |
Jung JH, Chae JJ, Prausnitz MR. Targeting drug delivery within the suprachoroidal space[J]. Drug Discov Today, 2019, 24(8): 1654-1659. DOI: 10.1016/j.drudis.2019.03.027.
|
41. |
Jung JH, Park S, Chae JJ, et al. Collagenase injection into the suprachoroidal space of the eye to expand drug delivery coverage and increase posterior drug targeting[J/OL]. Exp Eye Res, 2019, 189: 107824[2019-10-01]. https://pubmed.ncbi.nlm.nih.gov/31585119/. DOI: 10.1016/j. exer.2019.107824.
|
42. |
Abarca EM, Salmon JH, Gilger BC. Effect of choroidal perfusion on ocular tissue distribution after intravitreal or suprachoroidal injection in an arterially perfused ex vivo pig eye model[J]. J Ocul Pharmacol Ther, 2013, 29(8): 715-722. DOI: 10.1089/jop.2013.0063.
|
43. |
Wang M, Liu W, Lu Q, et al. Pharmacokinetic comparison of ketorolac after intracameral, intravitreal, and suprachoroidal administration in rabbits[J]. Retina, 2012, 32(10): 2158-2164. DOI: 10.1097/IAE.0b013e3182576d1d.
|
44. |
Chiang B, Venugopal N, Grossniklaus HE, et al. Thickness and closure kinetics of the suprachoroidal space following microneedle injection of liquid formulations[J]. Invest Ophthalmol Vis Sci, 2017, 58(1): 555-564. DOI: 10.1167/iovs.16-20377.
|
45. |
Tyagi P, Barros M, Stansbury JW, et al. Light-activated, in situ forming gel for sustained suprachoroidal delivery of Bevacizumab[J]. Mol Pharm, 2013, 10(8): 2858-2867. DOI: 10.1021/mp300716t.
|
46. |
Goldstein DA, Do D, Noronha G, et al. Suprachoroidal corticosteroid administration: a novel route for local treatment of noninfectious uveitis[J]. Transl Vis Sci Technol, 2016, 5(6): 14. DOI: 10.1167/tvst.5.6.14.
|
47. |
Yeh S, Kurup SK, Wang RC, et al. Suprachoroidal injection of triamcinolone acetonide, CLS-TA, for macular edema due to noninfectious uveitis: a randomized, phase 2 study (DOGWOOD)[J]. Retina, 2019, 39(10): 1880-1888. DOI: 10.1097/IAE. 0000000000002279. DOI: 10.1097/IAE.000000 0000002279.
|
48. |
Barakat MR, Wykoff CC, Gonzalez V, et al. Suprachoroidal CLS-TA plus intravitreal aflibercept for diabetic macular edema: a randomized, double-masked, parallel-design, controlled study[J]. Ophthalmol Retina, 2021, 5(1): 60-70. DOI: 10.1016/j.oret.2020.08.007.
|