1. |
Wu JH, Liu JH, Ko YC, et al. Haploinsufficiency of RCBTB1 is associated with Coats disease and familial exudative vitreoretinopathy[J]. Hum Mol Genet, 2016, 25(8): 1637-1647. DOI: 10.1093/hmg/ddw041.
|
2. |
Yang J, Xiao X, Sun W, et al. Variants in RCBTB1 are associated with autosomal recessive retinitis pigmentosa but not autosomal dominant FEVR[J]. Curr Eye Res, 2020, 6(6): 839-844. DOI: 10.1080/02713683.2020.1842457.
|
3. |
Huang Z, Zhang D, Thompson JA, et al. Deep clinical phenotyping and gene expression analysis in a patient with RCBTB1-associated retinopathy[J]. Ophthalmic Genet, 2021, 2(3): 266-275. DOI: 10.1080/13816810.2021.1891551.
|
4. |
Catomeris AJ, Ballios BG, Sangermano R, et al. Novel RCBTB1 variants causing later-onset non-syndromic retinal dystrophy with macular chorioretinal atrophy[J]. Ophthalmic Genetics, 2022, 43(3): 332-339. DOI: 10.1080/13816810.2021.2023196.
|
5. |
Coppieters F, Ascari G, Dannhausen K, et al. Isolated and syndromic retinal dystrophy caused by biallelic mutations in RCBTB1, a gene implicated in ubiquitination[J]. Am J Hum Genet, 2016, 99(2): 470-480. DOI: 10.1016/j.ajhg.2016.06.017.
|
6. |
Keenan TD, Agrón E, Domalpally A, et al. Progression of geographic atrophy in age-related macular degeneration: AREDS2 report number 16[J]. Ophthalmology, 2018, 125(12): 1913-1928. DOI: 10.1016/j.ophtha.2018.05.028.
|
7. |
Yang J, Sun W, Zhang Q. Start and end with genetics: RCBTB1 and beyond[J]. Curr Eye Res, 2021, 46(12): 1932-1933. DOI: 10.1080/02713683.2021.1933060.
|
8. |
Birtel J, Von Landenberg C, Gliem M, et al. Mitochondrial retinopathy[J]. Ophthalmol Retina, 2022, 6(1): 65-79. DOI: 10.1016/j.oret.2021.02.017.
|
9. |
Aasen T, Izpisua Belmonte JC. Isolation and cultivation of human keratinocytes from skin or plucked hair for the generation of induced pluripotent stem cells[J]. Nat Protoc, 2010, 5(2): 371-382. DOI: 10.1038/nprot.2009.241.
|
10. |
Oda Y, Yoshimura Y, Ohnishi H, et al. Induction of pluripotent stem cells from human third molar mesenchymal stromal cells[J]. J Biol Chem, 2010, 285(38): 29270-29278. DOI: 10.1074/jbc.M109.055889.
|
11. |
Li G, Xie B, He L, et al. Generation of retinal organoids with mature rods and cones from urine-derived human induced pluripotent stem cells[J/OL]. Stem Cells Int, 2018, 2018: 4968658[2018-06-13]. https://pubmed.ncbi.nlm.nih.gov/30008752/. DOI: 10.1155/2018/4968658.
|
12. |
Loh YH, Agarwal S, Park IH. Generation of induced pluripotent stem cells from human blood[J]. Blood, 2009, 113(22): 5476-5479. DOI: 10.1182/blood-2009-02-204800.
|
13. |
Huang Z, Zhang D, Chen SC, et al. Generation of three induced pluripotent stem cell lines from an isolated inherited retinal dystrophy patient with RCBTB1 frameshifting mutations[J/OL]. Stem Cell Res, 2019, 40: 101549[2019-08-23]. https://pubmed.ncbi.nlm.nih.gov/31494449/. DOI: 10.1016/j.scr.2019.101549.
|
14. |
Carron M, Naert T, Ascari G, et al. Functional characterization of a Xenopus tropicalis knockout and a human cellular model of RCBTB1-associated inherited retinal disease shows involvement of RCBTB1 in the cellular response to oxidative stress[J]. Invest Ophth Vis Sci, 2020, 61(7): 1125.
|
15. |
Huang Z, Zhang D, Chen SC, et al. Mitochondrial dysfunction and impaired antioxidant responses in retinal pigment epithelial cells derived from a patient with RCBTB1-associated retinopathy[J/OL]. Cells, 2023, 12(10): 1358[2023-05-10]. https://pubmed.ncbi.nlm.nih.gov/37408192/. DOI: 10.3390/cells12101358.
|
16. |
Huang Z, Zhang D, Chen SC, et al. Gene replacement therapy restores RCBTB1 expression and cilium length in patient-derived retinal pigment epithelium[J]. J Cell Mol Med, 2021, 25(21): 10020-10027. DOI: 10.1111/jcmm.16911.
|
17. |
Furuta M, Hori T, Fukagawa T. Chromatin binding of RCC1 during mitosis is important for its nuclear localization in interphase[J]. Mol Biol Cell, 2015, 27(2): 371-381. DOI: 10.1091/mbc.e15-07-0497.
|
18. |
Hadjebi O, Casas-Terradellas E, Garcia-Gonzalo FR, et al. The RCC1 superfamily: from genes, to function, to disease[J]. Biochim Biophys Acta, 2008, 1783(8): 1467-1479. DOI: 10.1016/j.bbamcr.2008.03.015.
|
19. |
Ren X, Jiang K, Zhang F. The multifaceted roles of RCC1 in tumorigenesis[J/OL]. Front Mol Biosci, 2020, 7: 225[2020-09-15]. https://pubmed.ncbi.nlm.nih.gov/33102517/. DOI: 10.3389/fmolb.2020.00225.
|
20. |
Guo DF, Tardif V, Ghelima K, et al. A novel angiotensin II type 1 receptor-associated protein induces cellular hypertrophy in rat vascular smooth muscle and renal proximal tubular cells[J]. J Biol Chem, 2004, 279(20): 21109-21120. DOI: 10.1074/jbc.M401544200.
|
21. |
Plafker KS, Singer JD, Plafker SM. The ubiquitin conjugating enzyme, UbcM2, engages in novel interactions with components of cullin-3 based E3 ligases[J]. Biochemistry, 2009, 48(15): 3527-3537. DOI: 10.1021/bi801971m.
|
22. |
Friedman JS, Ray JW, Waseem N, et al. Mutations in a BTB-Kelch protein, KLHL7, cause autosomal-dominant retinitis pigmentosa[J]. Am J Hum Genet, 2009, 84(6): 792-800. DOI: 10.1016/j.ajhg.2009.05.007.
|
23. |
Chakarova CF, Khanna H, Shah AZ, et al. TOPORS, implicated in retinal degeneration, is a cilia-centrosomal protein[J]. Hum Mol Genet, 2011, 20(5): 975-987. DOI: 10.1093/hmg/ddq543.
|
24. |
Kasai S, Shimizu S, Tatara Y, et al. Regulation of Nrf2 by mitochondrial reactive oxygen species in physiology and pathology[J]. Biomolecules, 2020, 10(2): 320. DOI: 10.3390/biom10020320.
|
25. |
Tonelli C, Chio IIC, Tuveson DA, et al. Transcriptional regulation by Nrf2[J]. Antioxid Redox Signal, 2018, 29(17): 1727-1745. DOI: 10.1089/ars.2017.7342.
|
26. |
Buskin A, Zhu L, Chichagova V, et al. Disrupted alternative splicing for genes implicated in splicing and ciliogenesis causes PRPF31 retinitis pigmentosa[J/OL]. Nat Commun, 2018, 9(1): 4234[2018-10-12]. https://pubmed.ncbi.nlm.nih.gov/30315276/. DOI: 10.1038/s41467-018-06448-y.
|
27. |
Duong TT, Lim J, Vasireddy V, et al. Comparative AAV-eGFP transgene expression using vector serotypes 1-9, 7m8, and 8b in human pluripotent stem cells, RPEs, and human and rat cortical neurons[J/OL]. Stem Cells Int, 2019, 2019: 7281912[2019-01-17]. https://pubmed.ncbi.nlm.nih.gov/30800164. DOI: 10.1155/2019/7281912.
|
28. |
Maeda T, Mandai M, Sugita S, et al. Strategies of pluripotent stem cell-based therapy for retinal degeneration: update and challenges[J]. Trends Mol Med, 2022, 28(5): 388-404. DOI: 10.1016/j.molmed.2022.03.001.
|