1. |
Peralvarez-Marin A, Garriga P. Optogenetics comes of age:novel inhibitory light-gated anionic channels allow efficient silencing of neural function[J]. Chembiochem, 2016, 17(3):204-206.DOI:10.1002/cbic.201500608.
|
2. |
Deisseroth K. Optogenetics[J]. Nature methods, 2011, 8(1):26-29.DOI:10.1038/nmeth.f.324.
|
3. |
Lin SC, Deisseroth K, Henderson JM. Optogenetics:background and concepts for neurosurgery[J]. Neurosurgery, 2011, 69(1):1-3.DOI:10.1227/NEU.0b013e318224688e.
|
4. |
Adamantidis AR, Zhang F, De Lecea L, et al. Optogenetics:opsins and optical interfaces in neuroscience[J]. Cold Spring Harb Protoc, 2014, 2014(8):815-822.DOI:10.1101/pdb.top083329.
|
5. |
Adamantidis AR. Modern neurosciences:with or without optogenetics?[J]. Med Sci (Paris), 2015, 31(3):231-232.DOI:10.1051/medsci/20153103001.
|
6. |
Sakmar TP. Structure of rhodopsin and the superfamily of seven-helical receptors:the same and not the same[J]. Curr Opin Cell Biol, 2002, 14(2):189-195.
|
7. |
Ranaghan MJ, Greco JA, Wagner NL, et al. Photochromic bacteriorhodopsin mutant with high holographic efficiency and enhanced stability via a putative self-repair mechanism[J]. ACS Appl Mater Interfaces, 2014, 6(4):2799-2808.DOI:10.1021/am405363z.
|
8. |
Greenberg KP, Pham A, Werblin FS. Differential targeting of optical neuromodulators to ganglion cell soma and dendrites allows dynamic control of center-surround antagonism[J]. Neuron, 2011, 69(4):713-720. DOI:10.1016/j.neuron.2011.01.024.
|
9. |
Wu C, Ivanova E, Zhang Y, et al. rAAV-mediated subcellular targeting of optogenetic tools in retinal ganglion cells in vivo[J/OL]. PLoS One, 2013, 8(6):66332[2013-01-14].http://dx.plos.org/10.1371/journal.pone.0066332. DOI:10.1371/journal.pone.0066332.
|
10. |
Busskamp V, Duebel J, Balya D, et al. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa[J]. Science, 2010, 329(5990):413-417.DOI:10.1126/science.1190897.
|
11. |
Holmes D. Is neurology ready to see the light?[J]. Lancet Neurol, 2012, 11(8):663-664.DOI:10.1016/S1474-4422(12)70170-9.
|
12. |
Adamantidis A, Arber S2, Bains JS, et al. Optogenetics:10 years after ChR2 in neurons——views from the community[J]. Nat Neurosci, 2015, 18(9):1202-1212. DOI:10.1038/nn.4106.
|
13. |
Ji ZG, Wang H. ChR2 transgenic animals in peripheral sensory system:sensing light as various sensations[J]. Life Sci, 2016, 150:95-102. DOI:10.1016/j.lfs.2016.02.057.
|
14. |
Lin JY. Optogenetic excitation of neurons with channelrhodopsins:light instrumentation, expression systems, and channelrhodopsin variants[J]. Prog Brain Res, 2012, 196:29-47.DOI:10.1016/B978-0-444-59426-6.00002-1.
|
15. |
Sekharan S, Wei JN, Batista VS. The active site of melanopsin:the biological clock photoreceptor[J]. J Am Chem Soc, 2012, 134(48):19536-19539.DOI:10.1021/ja308763b.
|
16. |
Hughes S, Jagannath A, Rodgers J, et al. Signalling by melanopsin (OPN4) expressing photosensitive retinal ganglion cells[J]. Eye, 2016, 30(2):247-254.DOI:10.1038/eye.2015.264.
|
17. |
Spitschan M, Datta R, Stern AM, et al. Human visual cortex responses to rapid cone and melanopsin-directed flicker[J]. J Neurosci, 2016, 36(5):1471-1482. DOI:10.1523/JNEUROSCI.1932-15.2016.
|
18. |
Sexton T, Buhr E, Van Gelder RN. Melanopsin and mechanisms of non-visual ocular photoreception[J]. J Biol Chem, 2012, 287(3):1649-1656. DOI:10.1074/jbc.R111.301226.
|
19. |
Tsunematsu T, Tanaka KF, Yamanaka A, et al. Ectopic expression of melanopsin in orexin/hypocretin neurons enables control of wakefulness of mice in vivo by blue light[J]. Neurosci Res, 2013, 75(1):23-28.DOI:10.1016/j.neures.2012.07.005.
|
20. |
Liske H, Qian X, Anikeeva P, et al. Optical control of neuronal excitation and inhibition using a single opsin protein, ChR2[J]. Sci Rep, 2013, 3:3110. DOI:10.1038/srep03110.
|
21. |
Koizumi A, Tanaka KF, Yamanaka A. The manipulation of neural and cellular activities by ectopic expression of melanopsin[J]. Neurosci Res, 2013, 75(1):3-5.DOI:10.1016/j.neures.2012.07.010.
|
22. |
Lin B, Koizumi A, Tanaka N, et al. Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin[J]. Proc Natl Acad Sci USA, 2008, 105(41):16009-16014.DOI:10.1073/pnas.0806114105.
|
23. |
Byrne LC, Khalid F, Lee T, et al. AAV-mediated, optogenetic ablation of Muller Glia leads to structural and functional changes in the mouse retina[J/OL]. PLoS One, 2013, 8(9):76075[2013-09-27]. http://dx.plos.org/10.1371/journal.pone.0076075.DOI:10.1371/journal.pone.0076075.
|
24. |
Stutika C, Gogol-D ring A, Botschen L, et al. A comprehensive RNA sequencing analysis of the adeno-associated virus (AAV) type 2 transcriptome reveals novel AAV transcripts, splice variants, and derived proteins[J]. J Virol, 2015, 90(3):1278-1289.DOI:10.1128/JVI.02750-15.
|
25. |
Arenkiel BR, Peca J, Davison IG, et al. In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2[J]. Neuron, 2007, 54(2):205-218.
|
26. |
Schoonheim PJ, Arrenberg AB, Del Bene F, et al. Optogenetic localization and genetic perturbation of saccade-generating neurons in zebrafish[J].J Neurosci, 2010, 30(20):7111-7120.DOI:10.1523/JNEUROSCI.5193-09.2010.
|
27. |
Hsiao PY, Wu MC, Lin YY, et al. Optogenetic manipulation of selective neural activity in free-moving drosophila adults[J]. Methods Mol Biol, 2016, 1408:377-387.DOI:10.1007/978-1-4939-3512-3_26.
|
28. |
Inoue K, Takada M, Matsumoto M. Neuronal and behavioural modulations by pathway-selective optogenetic stimulation of the primate oculomotor system[J]. Nat Commun, 2015, 6:8378.DOI:10.1038/ncomms9378.
|
29. |
Weick JP, Johnson MA, Skroch SP, et al. Functional control of transplantable human ESC-derived neurons via optogenetic targeting[J]. Stem cells, 2010, 28(11):2008-2016.DOI:10.1002/stem.514.
|
30. |
Flusberg BA, Jung JC, Cocker ED, et al. In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope[J]. Opt Lett, 2005, 30(17):2272-2274.
|
31. |
Busskamp V, Picaud S, Sahel JA, et al. Optogenetic therapy for retinitis pigmentosa[J]. Gene Ther, 2012, 19(2):169-175.DOI:10.1038/gt.2011.155.
|
32. |
Roska B, Busskamp V, Sahel JA, et al. Retinitis pigmentosa:eye sight restoration by optogenetic therapy[J]. Biol Aujourdhui, 2013, 207(2):109-121.DOI:10.1051/jbio/2013011.
|
33. |
Castilho Á, Ambrósio AF, Hartveit E, et al. Disruption of a neural microcircuit in the rod pathway of the mammalian retina by diabetes mellitus[J]. J Neurosci, 2015, 35(13):5422-5433.DOI:10.1523/JNEUROSCI.5285-14.2015.
|
34. |
Song H, Rossi EA, Latchney L, et al. Cone and rod loss in Stargardt disease revealed by adaptive optics scanning light ophthalmoscopy[J]. JAMA Ophthalmol, 2015, 133(10):1198-1203.DOI:10.1001/jamaophthalmol.2015.2443.
|
35. |
Hidalgo-de-Quintana J, Schwarz N, Meschede IP, et al. The Leber congenital amaurosis protein AIPL1 and EB proteins co-localize at the photoreceptor cilium[J]. PLoS One, 2015, 10(3):0121440[2015-03-25]. http://dx.plos.org/10.1371/journal.pone.0121440. DOI:10.1371/journal.pone.0121440.
|
36. |
Lin B, Masland RH, Strettoi E. Remodeling of cone photoreceptor cells after rod degeneration in rd mice[J]. Exp Eye Res, 2009, 88(3):589-599.DOI:10.1016/j.exer.2008.11.022.
|
37. |
Cho AK, Sampath AP, Weiland JD. Physiological response of normal and RD mouse retinal ganglion cells to electrical stimulation[J]. Conf Proc IEEE Eng Med Biol Soc, 2012, 2012:2985-2988.DOI:10.1109/EMBC.2012.6346591.
|
38. |
May CA. Fibrae medullares in the retina of the RD mouse:a case report[J]. Curr Eye Res, 2009, 34(5):411-413.DOI:10.1080/02713680902825507.
|
39. |
Lagali PS, Balya D, Awatramani GB, et al. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration[J]. Nat Neurosci, 2008, 11(6):667-675.DOI:10.1038/nn.2117.
|
40. |
Sugano E, Isago H, Wang Z, et al. Immune responses to adeno-associated virus type 2 encoding channelrhodopsin-2 in a genetically blind rat model for gene therapy[J]. Gene Ther, 2011, 18(3):266-274.DOI:10.1038/gt.2010.140.
|
41. |
Ikeda Y, Ishibashi T. Neuroprotective gene therapy to treat patients with retinitis pigmentosa[J]. Fukuoka Igaku Zasshi, 2010, 101(9):183-189.
|
42. |
Doroudchi MM, Greenberg KP, Liu J, et al. Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness[J]. Mol Ther, 2011, 19(7):1220-1229.DOI:10.1038/mt.2011.69.
|
43. |
Kleinlogel S, Feldbauer K, Dempski RE, et al. Ultra light-sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh[J]. Nat Neurosci, 2011, 14(4):513-518.DOI:10.1038/nn.2776.
|
44. |
Thyagarajan S, van Wyk M, Lehmann K, et al. Visual function in mice with photoreceptor degeneration and transgenic expression of channelrhodopsin 2 in ganglion cells[J]. J Neurosci, 2010, 30(26):8745-8758.DOI:10.1523/JNEUROSCI.4417-09.2010.
|
45. |
Kleinlogel S. Optogenetic user's guide to Opto-GPCRs[J]. Front Biosci (Landmark Ed)., 2016, 21:794-805.
|