1. |
Mantovani A, Sica A, Locati M. Macrophage polarization comes of age[J]. Immunity, 2005, 23(4): 344-346. DOI: 10.1016/j.immuni.2005.10.001.
|
2. |
Martinez FO, Sica A, Mantovani A, et al. Macrophage activation and polarization[J]. Front Biosci, 2008, 13: 453-461.
|
3. |
Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions[J]. Immunity, 2010, 32(5): 593-604. DOI: 10.1016/j.immuni.2010.05.007.
|
4. |
Mantovani A, Sica A, Sozzani S, et al. The chemokine system in diverse forms of macrophage activation and polarization[J]. Trends Immunol, 2004, 25(12): 677-686. DOI: 10.1016/j.it.2004.09.015.
|
5. |
Mantovani A, Sozzani S, Locati M, et al. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes[J]. Trends Immunol, 2002, 23(11): 549-555.
|
6. |
Biswas SK, Gangi L, Paul S, et al. A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation) [J]. Blood, 2006, 107(5): 2112-2122. DOI: 10.1182/blood-2005-01-0428.
|
7. |
Duluc D, Corvaisier M, Blanchard S, et al. Interferon-gamma reverses the immunosuppressive and protumoral properties and prevents the generation of human tumor-associated macrophages[J]. Int J Cancer, 2009, 125(2): 367-373. DOI: 10.1002/ijc.24401.
|
8. |
Chen L, Yang P, Kijlstra A. Distribution, markers, and functions of retinal microglia[J]. Ocul Immunol Inflamm, 2002, 10(1): 27-39.
|
9. |
Diaz-Araya CM, Provis JM, Penfold PL, et al. Development of microglial topography in human retina[J]. J Comp Neurol, 1995, 363(1): 53-68. DOI: 10.1002/cne.903630106.
|
10. |
Karlstetter M, Langmann T. Microglia in the aging retina[J]. Adv Exp Med Biol, 2014, 801: 207-212. DOI: 10.1007/978-1-4614-3209-8_27.
|
11. |
Zhang C, Lam TT, Tso MO. Heterogeneous populations of microglia/macrophages in the retina and their activation after retinal ischemia and reperfusion injury[J]. Exp Eye Res, 2005, 81(6): 700-709. DOI: 10.1016/j.exer.2005.04.008.
|
12. |
Langmann T. Microglia activation in retinal degeneration[J]. J Leukoc Biol, 2007, 81(6): 1345-1351. DOI: 10.1189/jlb.0207114.
|
13. |
Buschini E, Piras A, Nuzzi R, et al. Age related macular degeneration and drusen: neuroinflammation in the retina[J]. Prog Neurobiol, 2011, 95(1): 14-25. DOI: 10.1016/j.pneurobio.2011.05.011.
|
14. |
Kumaramanickavel G. Age-related macular degeneration: genetics and biology[J]. Asia Pac J Ophthalmol (Phila), 2016, 5(4): 229-235. DOI: 10.1097/APO.0000000000000223.
|
15. |
Kauppinen A, Paterno JJ, Blasiak J, et al. Inflammation and its role in age-related macular degeneration[J]. Cell Mol Life Sci, 2016, 73(9): 1765-1786. DOI: 10.1007/s00018-016-2147-8.
|
16. |
Yang Y, Liu F, Tang M, et al. Macrophage polarization in experimental and clinical choroidal neovascularization[J/OL]. Sci Rep, 2016, 6: 30933[2016-08-04]. http://dx.doi.org/10.1038/srep30933. DOI: 10.1038/srep30933.
|
17. |
Liu J, Copland DA, Horie S, et al. Myeloid cells expressing VEGF and arginase-1 following uptake of damaged retinal pigment epithelium suggests potential mechanism that drives the onset of choroidal angiogenesis in mice[J/OL]. PLoS One, 2013, 8(8): 72935[2013-08-16]. http://dx.plos.org/10.1371/journal.pone.0072935. DOI: 10.1371/journal.pone.0072935.
|
18. |
Sakurai E, Anand A, Ambati BK, et al. Macrophage depletion inhibits experimental choroidal neovascularization[J]. Invest Ophthalmol Vis Sci, 2003, 44(8): 3578-3585.
|
19. |
Ambati J, Anand A, Fernandez S, et al. An animal model of age-related macular degeneration in senescent Ccl-2-or Ccr-2-deficient mice[J]. Nat Med, 2003, 9(11): 1390-1397. DOI: 10.1038/nm950.
|
20. |
Apte RS, Richter J, Herndon J, et al. Macrophages inhibit neovascularization in a murine model of age-related macular degeneration[J/OL]. PLoS Med, 2006, 3(8): 310[2006-08-15]. http://dx.plos.org/10.1371/journal.pmed.0030310. DOI: 10.1371/journal.pmed.0030310.
|
21. |
Cao X, Shen D, Patel MM, et al. Macrophage polarization in the maculae of age-related macular degeneration: a pilot study[J]. Pathol Int, 2011, 61(9): 528-535. DOI: 10.1111/j.1440-1827.2011.02695.x.
|
22. |
Cuenca N, Fernandez-Sanchez L, Campello L, et al. Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases[J]. Prog Retin Eye Res, 2014, 43: 17-75. DOI: 10.1016/j.preteyeres.2014.07.001.
|
23. |
Kelly J, Ali Khan A, Yin J, et al. Senescence regulates macrophage activation and angiogenic fate at sites of tissue injury in mice[J]. J Clin Invest, 2007, 117(11): 3421-3426. DOI: 10.1172/JCI32430.
|
24. |
Zhou Y, Yoshida S, Kubo Y, et al. Different distributions of M1 and M2 macrophages in a mouse model of laser-induced choroidal neovascularization[J]. Mol Med Rep, 2017, 15(6): 3949-3956. DOI: 10.3892/mmr.2017.6491.
|
25. |
He L, Marneros AG. Macrophages are essential for the early wound healing response and the formation of a fibrovascular scar[J]. Am J Pathol, 2013, 182(6): 2407-2417. DOI: 10.1016/j.ajpath.2013.02.032.
|
26. |
Barquet LA. Role of VEGF in diseases of the retina[J]. Arch Soc Esp Oftalmol, 2015, 90 Suppl 1: S3-5. DOI: 10.1016/S0365-6691(15)30002-2.
|
27. |
Rutar M, Provis JM. Role of chemokines in shaping macrophage activity in AMD[J]. Adv Exp Med Biol, 2016, 854: 11-16. DOI: 10.1007/978-3-319-17121-0_2.
|
28. |
Sonoda KH. Association of ocular inflammation and innate immune response[J]. Nippon Ganka Gakkai Zasshi, 2008, 112(3): 279-298.
|
29. |
Ma J, Mehta M, Lam G, et al. Influence of subretinal fluid in advanced stage retinopathy of prematurity on proangiogenic response and cell proliferation[J]. Mol Vis, 2014, 20: 881-893.
|
30. |
Marchetti V, Yanes O, Aguilar E, et al. Differential macrophage polarization promotes tissue remodeling and repair in a model of ischemic retinopathy[J]. Sci Rep, 2011, 1: 76. DOI: 10.1038/srep00076.
|
31. |
Nakagawa Y. Endothelial progenitor cell biology in retinopathy of prematurity[J]. Nippon Ganka Gakkai Zasshi, 2013, 117(11): 893-902.
|
32. |
Nakagawa Y, Masuda H, Ito R, et al. Aberrant kinetics of bone marrow-derived endothelial progenitor cells in the murine oxygen-induced retinopathy model[J]. Invest Ophthalmol Vis Sci, 2011, 52(11): 7835-7841. DOI: 10.1167/iovs.10-5880.
|
33. |
Medina RJ, O’Neill CL, O’Doherty TM, et al. Myeloid angiogenic cells act as alternative M2 macrophages and modulate angiogenesis through interleukin-8[J]. Mol Med, 2011, 17(9-10): 1045-1055. DOI: 10.2119/molmed.2011.00129.
|
34. |
Zhu Y, Tan W, Demetriades AM, et al. Interleukin-17A neutralization alleviated ocular neovascularization by promoting M2 and mitigating M1 macrophage polarization[J]. Immunology, 2016, 147(4): 414-428. DOI: 10.1111/imm.12571.
|
35. |
Sen HN, Nussenblatt RB. Sympathetic ophthalmia: what have we learned[J]? Am J Ophthalmol, 2009, 148(5): 632-633. DOI: 10.1016/j.ajo.2009.07.024.
|
36. |
Furusato E, Shen D, Cao X, et al. Inflammatory cytokine and chemokine expression in sympathetic ophthalmia: a pilot study[J]. Histol Histopathol, 2011, 26(9): 1145-1151. DOI: 10.14670/HH-26.1145.
|
37. |
Ngambenjawong C, Gustafson HH, Pun SH. Progress in tumor-associated macrophage (TAM)-targeted therapeutics[J/OL]. Adv Drug Deliv Rev, 2017, 2017: E1[2017-04-25]. https://linkinghub.elsevier.com/retrieve/pii/S0169-409X(17)30045-5. DOI: 10.1016/j.addr.2017.04.010.[published online of ahead of print].
|
38. |
Goswami KK, Ghosh T, Ghosh S, et al. Tumor promoting role of anti-tumor macrophages in tumor microenvironment[J]. Cell Immunol, 2017, 316: 1-10. DOI: 10.1016/j.cellimm.2017.04.005.
|
39. |
Kaliki S, Shields CL, Shields JA. Uveal melanoma: estimating prognosis[J]. Indian J Ophthalmol, 2015, 63(2): 93-102. DOI: 10.4103/0301-4738.154367.
|
40. |
Bronkhorst IH, Jager MJ. Uveal melanoma: the inflammatory microenvironment[J]. J Innate Immun, 2012, 4(5-6): 454-462. DOI: 10.1159/000334576.
|
41. |
Ly LV, Baghat A, Versluis M, et al. In aged mice, outgrowth of intraocular melanoma depends on proangiogenic M2-type macrophages[J]. J Immunol, 2010, 185(6): 3481-3488. DOI: 10.4049/jimmunol.0903479.
|
42. |
Kalesnikoff J, Sly LM, Hughes MR, et al. The role of SHIP in cytokine-induced signaling[J].. Rev Physiol Biochem Pharmacol, 2003, 149: 87-103. DOI: 10.1007/s10254-003-0016-y.
|