1. |
Abhary S, Hewitt AW, Burdon KP, et al. A systematic meta-analysis of genetic association studies for diabetic retinopathy[J]. Diabetes, 2009, 58(9): 2137-2147. DOI: 10.2337/db09-0059.
|
2. |
Waddington CH. The epigenotype 1942[J]. Int J Epidemiol, 2012, 41(1): 10-13. DOI: 10.1093/ije/dyr184.
|
3. |
Portela A, Esteller M. Epigenetic modifications and human disease[J]. Nat Biotechnol, 2010, 28(10): 1057-1068. DOI: 10.1038/nbt.1685.
|
4. |
Perrone L, Devi TS, Hosoya K, et al. Thioredoxin interacting protein (TXNIP) induces inflammation through chromatin modification in retinal capillary endothelial cells under diabetic conditions[J]. J Cell Physiol, 2009, 221(1): 262-272. DOI: 10.1002/jcp.21852.
|
5. |
Kadiyala CS, Zheng L, Du Y, et al. Acetylation of retinal histones in diabetes increases inflammatory proteins: effects of minocycline and manipulation of histone acetyltransferase (HAT) and histone deacetylase (HDAC)[J]. J Biol Chem, 2012, 287(31): 25869-25880. DOI: 10.1074/jbc.M112.375204.
|
6. |
Herencia-Bueno KE, Aldrovani M, Crivelaro RM, et al. Reduction in histone H3 acetylation and chromatin remodeling in corneas of alloxan-induced diabetic rats[J]. Cornea, 2018, 37(5): 624-632. DOI: 10.1097/ICO.0000000000001533.
|
7. |
Wu JH, Gao Y, Ren AJ, et al. Altered microRNA expression profiles in retinas with diabetic retinopathy[J]. Ophthalmic Res, 2012, 47(4): 195-201. DOI: 10.1159/000331992.
|
8. |
Radović N, Nikolić Jakoba N, Petrović N, et al. MicroRNA-146a and microRNA-155 as novel crevicular fluid biomarkers for periodontitis in non-diabetic and type 2 diabetic patients[J]. J Clin Periodontol, 2018, 45(6): 663-671. DOI: 10.1111/jcpe.12888.
|
9. |
Fan B, Luk AOY, Chan JCN, et al. MicroRNA and diabetic complications: a clinical perspective[J]. Antioxid Redox Signal, 2018, 29(11): 1041-1063. DOI: 10.1089/ars.2017.7318.
|
10. |
Ungerbäck J, Hosokawa H, Wang X, et al. Pioneering, chromatin remodeling, and epigenetic constraint in early T-cell gene regulation by SPI1 (PU.1)[J]. Genome Res, 2018, 28(10): 1508-1519. DOI: 10.1101/gr.231423.117.
|
11. |
Zhong Q, Kowluru RA. Epigenetic changes in mitochondrial superoxide dismutase in the retina and the development of diabetic retinopathy[J]. Diabetes, 2011, 60(4): 1304-1313. DOI: 10.2337/db10-0133.
|
12. |
Miao F, Wu X, Zhang L, et al. Genome-wide analysis of histone lysine methylation variations caused by diabetic conditions in human monocytes[J]. J Biol Chem, 2007, 282(18): 13854-13863. DOI: 10.1074/jbc.M609446200.
|
13. |
Zhong Q, Kowluru RA. Role of histone acetylation in the development of diabetic retinopathy and the metabolic memory phenomenon[J]. J Cell Biochem, 2010, 110(6): 1306-1313. DOI: 10.1002/jcb.22644.
|
14. |
Brasacchio D, Okabe J, Tikellis C, et al. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail[J]. Diabetes, 2009, 58(5): 1229-1236. DOI: 10.2337/db08-1666.
|
15. |
Deering TG, Ogihara T, Trace AP, et al. Methyltransferase Set7/9 maintains transcription and euchromatin structure at islet-enriched genes[J]. Diabetes, 2009, 58(1): 185-193. DOI: 10.2337/db08-1150.
|
16. |
Tewari S, Zhong Q, Santos JM, et al. Mitochondria DNA replication and DNA methylation in the metabolic memory associated with continued progression of diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2012, 53(8): 4881-4888. DOI: 10.1167/iovs.12-9732.
|
17. |
Mishra M, Kowluru RA. Epigenetic modification of mitochondrial DNA in the development of diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2015, 56(9): 5133-5142. DOI: 10.1167/iovs.15-16937.
|
18. |
Mishra M, Kowluru RA. The role of DNA methylation in the metabolic memory phenomenon associated with the continued progression of diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2016, 57(13): 5748-5757. DOI: 10.1167/iovs.16-19759.
|
19. |
Kowluru RA, Shan Y, Mishra M. Dynamic DNA methylation of matrix metalloproteinase-9 in the development of diabetic retinopathy[J]. Lab Invest, 2016, 96(10): 1040-1049. DOI: 10.1038/labinvest.2016.78.
|
20. |
Miao F, Gonzalo IG, Lanting L, et al. In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions[J]. J Biol Chem, 2004, 279(17): 18091-18097. DOI: 10.1074/jbc.M311786200.
|
21. |
Xu B, Chiu J, Feng B, et al. PARP activation and the alteration of vasoactive factors and extracellular matrix protein in retina and kidney in diabetes[J]. Diabetes Metab Res Rev, 2008, 24(5): 404-412. DOI: 10.1002/dmrr.842.
|
22. |
Gao J, Zheng Z, Gu Q, et al. Deacetylation of MnSOD by PARP-regulated SIRT3 protects retinal capillary endothelial cells from hyperglycemia-induced damage[J]. Biochem Biophys Res Commun, 2016, 472(3): 425-431. DOI: 10.1016/j.bbrc.2015.12.037.
|
23. |
Zhong Q, Kowluru RA. Epigenetic modification of Sod2 in the development of diabetic retinopathy and in the metabolic memory: role of histone methylation[J]. Invest Ophthalmol Vis Sci, 2013, 54(1): 244-250. DOI: 10.1167/iovs.12-10854.
|
24. |
Ye P, Liu J, He F, et al. Hypoxia-induced deregulation of miR-126 and its regulative effect on VEGF and MMP-9 expression[J]. Int J Med Sci, 2013, 11(1): 17-23. DOI: 10.7150/ijms.7329.
|
25. |
Li EH, Huang QZ, Li GC, et al. Effects of miRNA-200b on the development of diabetic retinopathy by targeting VEGFA gene[J/OL]. Biosci Rep, 2017, 37(2): BSR20160572[2017-04-30]. http://www.bioscirep.org/cgi/pmidlookup?view=long&pmid=28122882. DOI: 10.1042/BSR20160572.
|
26. |
Kovacs B, Lumayag S, Cowan C, et al. MicroRNAs in early diabetic retinopathy in streptozotocin-induced diabetic rats[J]. Invest Ophthalmol Vis Sci, 2011, 52(7): 4402-4409. DOI: 10.1167/iovs.10-6879.
|
27. |
Ling S, Birnbaum Y, Nanhwan MK, et al. MicroRNA-dependent cross-talk between VEGF and HIF1α in the diabetic retina[J]. Cell Signal, 2013, 25(12): 2840-2847. DOI: 10.1016/j.cellsig.2013.08.039.
|
28. |
Haque R, Hur EH, Farrell AN, et al. MicroRNA-152 represses VEGF and TGFβ1 expressions through post-transcriptional inhibition of (Pro)renin receptor in human retinal endothelial cells[J]. Mol Vis, 2015, 21: 224-235.
|
29. |
Pirola L. The DCCT/EDIC study: epigenetic clues after three decades[J]. Diabetes, 2014, 63(5): 1460-1462. DOI: 10.2337/db14-0238.
|
30. |
Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) Research Group, Lachin JM, White NH, et al. Effect of intensive diabetes therapy on the progression of diabetic retinopathy in patients with type 1 diabetes: 18 years of follow-up in the DCCT/EDIC[J]. Diabetes, 2015, 64(2): 631-642. DOI: 10.2337/db14-0930.
|
31. |
Chen Z, Miao F, Paterson AD, et al. Epigenomic profiling reveals an association between persistence of DNA methylation and metabolic memory in the DCCT/EDIC type 1 diabetes cohort[J]. Proc Natl Acad Sci USA, 2016, 113(21): 3002-3011. DOI: 10.1073/pnas.1603712113.
|
32. |
Miao F, Chen Z, Genuth S, et al. Evaluating the role of epigenetic histone modifications in the metabolic memory of type 1 diabetes[J]. Diabetes, 2014, 63(5): 1748-1762. DOI: 10.2337/db13-1251.
|
33. |
Kowluru RA, Chan PS. Metabolic memory in diabetes – from in vitro oddity to in vivo problem: role of apoptosis[J]. Brain Res Bull, 2010, 81(2-3): 297-302. DOI: 10.1016/j.brainresbull.2009.05.006.
|
34. |
Kowluru RA, Kanwar M, Kennedy A. Metabolic memory phenomenon and accumulation of peroxynitrite in retinal capillaries[J]. Exp Diabetes Res, 2007, 2007: 21976. DOI: 10.1155/2007/21976.
|
35. |
Kanwar M, Kowluru RA. Role of glyceraldehyde 3-phosphate dehydrogenase in the development and progression of diabetic retinopathy[J]. Diabetes, 2009, 58(1): 227-234. DOI: 10.2337/db08-1025.
|
36. |
Berthiaume M, Boufaied N, Moisan A, et al. High levels of oxidative stress globally inhibit gene transcription and histone acetylation[J]. DNA Cell Biol, 2006, 25(2): 124-134. DOI: 10.1089/dna.2006.25.124.
|
37. |
Liu W, Cui Y, Ren W, et al. Epigenetic biomarker screening by FLIM-FRET for combination therapy in ER+ breast cancer[J]. Clin Epigenetics, 2019, 11(1): 16. DOI: 10.1186/s13148-019-0620-6.
|
38. |
Duan YT, Yang XA, Fang LY, et al. Anti-proliferative and anti-invasive effects of garcinol from Garcinia indica on gallbladder carcinoma cells[J]. Pharmazie, 2018, 73(7): 413-417. DOI: 10.1691/ph.2018.8366.
|
39. |
Di Martile M, Desideri M, De Luca T, et al. Histone acetyltransferase inhibitor CPTH6 preferentially targets lung cancer stem-like cells[J]. Oncotarget, 2016, 7(10): 11332-11348. DOI: 10.18632/oncotarget.7238.
|
40. |
Yang Y, Liu K, Liang Y, et al. Histone acetyltransferase inhibitor C646 reverses epithelial to mesenchymal transition of human peritoneal mesothelial cells via blocking TGF-β1/Smad3 signaling pathway in vitro[J]. Int J Clin Exp Pathol, 2015, 8(3): 2746-2754.
|
41. |
Gao Y, Zhang C, Chang J, et al. Enzyme-instructed self-assembly of a novel histone deacetylase inhibitor with enhanced selectivity and anticancer efficiency[J/OL]. Biomater Sci, 2019, 2019: E1[2019-01-23]. https://doi.org/10.1039/c8bm01422a. DOI: 10.1039/c8bm01422a. [published online ahead of print].
|
42. |
Takai N, Ueda T, Nishida M, et al. A novel histone deacetylase inhibitor, Scriptaid, induces growth inhibition, cell cycle arrest and apoptosis in human endometrial cancer and ovarian cancer cells[J]. Int J Mol Med, 2006, 17(2): 323-329.
|
43. |
Hakami NY, Dusting GJ, Peshavariya HM. Trichostatin A, a histone deacetylase inhibitor suppresses NADPH oxidase 4-derived redox signalling and angiogenesis[J]. J Cell Mol Med, 2016, 20(10): 1932-1944. DOI: 10.1111/jcmm.12885.
|
44. |
Crosson CE, Mani SK, Husain S, et al. Inhibition of histone deacetylase protects the retina from ischemic injury[J]. Invest Ophthalmol Vis Sci, 2010, 51(7): 3639-3645. DOI: 10.1111/jcmm.12885.
|