1. |
CATELAS I, WIMMER M A, UTZSCHNEIDER S. Polyethylene and metal wear particles:characteristics and biological effects[J]. Semin Immunopathol, 2011, 33(3):257-271.
|
2. |
谭维琴, 杨士军, 崔建和.人工假体置换后的无菌性松动[J].中国组织工程研究与临床康复, 2011, 15(43):8133-8136.
|
3. |
王海, 宋科官.磨损颗粒诱导假体周围骨溶解的机制及基因治疗现状[J].哈尔滨医科大学学报, 2011, 45(1):95-98.
|
4. |
张方杰, 雷光华.金属对金属全髋关节置换术后体内金属离子对机体的影响[J].现代生物医学进展, 2011, 13:2558-2561, 2583.
|
5. |
BAL W, PROTAS A M, KASPRZAK K S. Genotoxicity of metal ions:chemical insights[J]. Met Ions Life Sci, 2011, 8:319-373.
|
6. |
GILBERT J L, MALI S, URBAN R M, et al. In vivo oxide-induced stress corrosion cracking of Ti-6Al-4V in a neck-stem modular taper:emergent behavior in a new mechanism of in vivo corrosion[J]. J Biomed Mater Res B Appl Biomater, 2012, 100:584-594.
|
7. |
JULIAN L C, MUNOZ A I. Influence of microstructure of HC CoCrMo biomedical alloys on the corrosion and wear behavior in simulated body fluids[J]. Tribol Int, 2011, 44:318-329.
|
8. |
AFOLARANMI G A, AKBAR M, BREWER J, et al. Distribution of metal released from cobalt-chromium alloy orthopaedic wear particles implanted into air pouches in mice[J]. J Biomed Mater Res Part A, 2012, 100(6):1529-1538.
|
9. |
MILOSEV I, REMSKAR M. In vivo production of nanosized metal wear debris formed by tribochemical reaction as confirmed by high-resolution TEM and XPS analyses[J]. J Biomed Mater Res Part A, 2009, 91(4):1100-1110.
|
10. |
DOORN P F, MIRRA J M, CAMPBELL P A, et al. Tissue reaction to metal on metal total hip prostheses[J]. Clin Orthop Relat Res, 1996, (329 Suppl):S187-S205.
|
11. |
BROWN C, WILLIAMS S, TIPPER J L, et al. Characterisation of wear particles produced by metal on metal and ceramic on metal hip prostheses under standard and microseparation simulation[J]. J Mater Sci Mater Med, 2007, 18(5):819-827.
|
12. |
PONTI J, SABBIONI E, MUNARO B, et al. Genotoxicity and morphological transformation induced by cobalt nanoparticles and cobalt chloride:an in vitro study in Balb/3T3 mouse fibroblasts[J]. Mutagenesis, 2009, 24(5):439-445.
|
13. |
WALKEY C D, OLSEN J B, GUO H, et al. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake[J]. J Am Chem Soc, 2012, 134(4):2139-2147.
|
14. |
ALARIFI S, ALI D, SULIMAN Y A O, et al. Oxidative stress contributes to cobalt oxide nanoparticles-induced cytotoxicity and DNA damage in human hepatocarcinoma cells[J]. Int J Nanomedicine, 2013, 8:189-199.
|
15. |
REINARDY H C, SYRETT J R, JEFFREE R A, et al. Cobalt-induced genotoxicity in male zebrafish (Danio rerio), with implications for reproduction and expression of DNA repair genes[J]. Aquat Toxicol, 2013, 126:224-230.
|
16. |
HARRIS R M, WILLIAMS T D, HODGES N J, et al. Reactive oxygen species and oxidative DNA damage mediate the cytotoxicity of tungsten-nickel-cobalt alloysin vitro[J]. Toxicol Appl Pharmacol, 2011, 250(1):19-28.
|
17. |
SABER A T, JACOBSEN N R, MORTENSEN A, et al. Nanotitanium dioxide toxicity in mouse lung is reduced in sanding dust from paint[J]. Part Fibre Toxicol, 2012, 9:4.
|
18. |
MAGAYE R, ZHAO J, BOWMAN L, et al. Genotoxicity and carcinogenicity of cobalt-, nickel-and copper-based nanoparticles[J]. Exp Ther Med, 2012, 4(4):551-561.
|
19. |
KVHNEL D, SCHEFFLER K, WELLNER P, et al. Comparative evaluation of particle properties, formation of reactive oxygen species and genotoxic potential of tungsten carbide based nanoparticles in vitro[J]. J Hazard Mater, 2012, 227-228:418-426.
|
20. |
Gill H S, GRAMMATOPOULOS G, ADSHEAD S, et al. Molecular and immune toxicity of CoCr nanoparticles in MoM hip arthroplasty[J]. Trends Mol Med, 2012, 18(3):145-155.
|
21. |
RAGHUNATHAN V K, DEVEY M, HAWKINS S, et al. Influence of particle size and reactive oxygen species on cobalt chromen an oparticle-mediated genotoxicity[J]. Biomaterials, 2013, 34(14):3559-3570.
|
22. |
JIANG H, LIU F, YANG H, et al. Effects of cobalt nanop articles on human T cells in vitro[J]. Biol Trace Elem Res, 2012, 146(1):23-29.
|