1. |
PURANIK A S, DAWSON E R, PEPPAS N A. Recent advances in drug eluting stents[J]. Int J Pharm, 2013, 441(1-2):665-679.
|
2. |
ZHANG Kun, LIU Tao, LI Jing'an, et al. Surface modification of implanted cardiovascular metal stents:from antithrombosis and antirestenosis to endothelialization[J]. J Biomed Mater Res A, 2014, 102(2):588-609.
|
3. |
QI Pengkai, YANG Ying, MAITZ F M, et al. Current status of research and application in vascular stents[J]. Chin Sci Bull, 2013, 58(35):4362-4370.
|
4. |
NAZNEEN F, HERZOG G, ARRIGAN D W, et al. Surface chemical and physical modification in stent technology for the treatment of coronary artery disease[J]. J Biomed Mater Res B Appl Biomater, 2012, 100(7):1989-2014.
|
5. |
HUAN Zhiguang, FRATILA-APACHITEI L E, APACHITEI I, et al. Porous TiO2 surface formed on nickel-titanium alloy by plasma electrolytic oxidation:A prospective polymer-free reservoir for drug eluting stent applications[J]. J Biomed Mater Res B Appl Biomater, 2013, 101(5):700-708.
|
6. |
ERIC JONES J, CHEN Meng, YU Qingsong. Corrosion resistance improvement for 316L stainless steel coronary artery stents by trimethylsilane plasma nanocoatings[J]. J Biomed Mater Res B Appl Biomater, 2014, 102(7):1363-1374.
|
7. |
WENG Yajun, CHEN Junying, TU Qiufen, et al. Biomimetic modification of metallic cardiovascular biomaterials:from function mimicking to endothelialization in vivo[J]. Interface Focus, 2012, 2(3):356-365.
|
8. |
CHEN Jialong, CAO Jianjun, WANG Juan, et al. Biofunctionalization of titanium with PEG and anti-CD34 for hemocompatibility and stimulated endothelialization[J]. J Colloid Interface Sci, 2012, 368(1):636-647.
|
9. |
PAPAFAKLIS M I, CHATZIZISIS Y S, NAKA K K, et al. Drug-eluting stent restenosis:effect of drug type, release kinetics, hemodynamics and coating strategy[J]. Pharmacol Ther, 2012, 134(1):43-53.
|
10. |
ZHAO J, FALOTICO R, NGUYEN T, et al. A nonelutable low-molecular weight heparin stent coating for improved thromboresistance[J]. J Biomed Mater Res B Appl Biomater, 2012, 100(5):1274-1282.
|
11. |
SIMARD T, HIBBERT B, RAMIREZ F D, et al. The evolution of coronary stents:a brief review[J]. Can J Cardiol, 2014, 30(1):35-45.
|
12. |
TAN A, ALAVIJEH M S, SEIFALIAN A M. Next generation stent coatings:convergence of biotechnology and nanotechnology[J]. Trends in Biotechnology, 2012, 30(8):406-409.
|
13. |
SUN Daming, ZHENG Yiming, YIN Tieying, et al. Coronary drug-eluting stents:from design optimization to newer strategies[J]. J Biomed Mater Res A, 2014, 102(5):1625-1640.
|
14. |
KADOTA K, MURAMATSU T, IWABUCHI M, et al. Randomized comparison of the nobori biolimus A9-eluting stent with the sirolimus-eluting stent in patients with stenosis in native coronary arteries[J]. Catheter Cardiovasc Interv, 2012, 80(5):789-796.
|
15. |
MURASE S, SUZUKI Y, YAMAGUCHI T, et al. The relationship between re-endothelialization and endothelial function after DES implantation:comparison between paclitaxcel eluting stent and zotarolims eluting stent[J]. Catheter Cardiovasc Interv, 2014, 83(3):412-417.
|
16. |
BLIGAARD N, THUESEN L, SAUNAMÄKI K, et al. Similar five-year outcome with paclitaxel- and sirolimus-eluting coronary stents[J]. Scand Cardiovasc J, 2014, 48(3):148-155.
|
17. |
NAGANUMA T, CHIEFFO A, TAKAGI K, et al. First generation versus new generation drug-eluting stents for the treatment of ostial/midshaft lesions in unprotected left main coronary artery:the Milan and New-Tokyo (MITO) registry[J]. Catheter Cardiovasc Interv, 2015, 85(3):E63-E69.
|
18. |
WYKRZYKOWSKA J J, ONUMA Y, SERRUYS P W. Advances in stent drug delivery:the future is in bioabsorbable stents[J]. Expert Opin Drug Deliv, 2009, 6(2):113-126.
|
19. |
SWEENEY C A, O'BRIEN B, MCHUGH P E, et al.experimental characterisation for micromechanical modelling of CoCr stent fatigue[J]. Biomaterials, 2014, 35(1):36-48.
|
20. |
WANG Juan, HE Yonghui, MAITZ M F, et al. A surface-eroding poly(1,3-trimethylene carbonate) coating for fully biodegradable magnesium-based stent applications:toward better biofunction, biodegradation and biocompatibility[J]. Acta Biomater, 2013, 9(10):8678-8689.
|
21. |
CHEN Y, LIN J, WAN Y, et al. Preparation and blood compatibility of electrospun PLA/curcu-min composite membranes[J]. Fibers and Polymers, 2012, 13(10):1254-1258.
|
22. |
LAÇIN N T, UTKAN G G. Role of biomaterials in prevention of in-stent restenosis[J]. J Biomed Mater Res B Appl Biomater, 2014, 102(5):1113-1120.
|
23. |
TAN A, FARHATNIA Y, DE MEL A, et al. Inception to actualization:next generation coronary stent coatings incorporating nanotechnology[J]. J Biotechnol, 2013, 164(1):151-170.
|
24. |
VON BIRGELEN C, SEN H, LAM M K, et al. Third-generation zotarolimus-eluting and everolimus-eluting stents in all-comer patients requiring a percutaneous coronary intervention (Dutch PEERS):a randomised, single-blind, multicentre, non-inferiority trial[J]. Lancet, 2014, 383(9915):413-423.
|
25. |
KLEINER L W, WRIGHT J C, WANG Yunbing. Evolution of implantable and insertable drug delivery systems[J]. J Control Release, 2014, 181:1-10.
|
26. |
CEYLAN H, TEKINAY A B, GULER M O. Selective adhesion and growth of vascular endothelial cells on bioactive peptide nanofiber functionalized stainless steel surface[J]. Biomaterials, 2011, 32(34):8797-8805.
|
27. |
ZHENG Wenting, WANG Zhihong, SONG Lijie, et al. Endothelialization and patency of RGD-functionalized vascular grafts in a rabbit carotid artery model[J]. Biomaterials, 2012, 33(10):2880-2891.
|
28. |
ORLANDO A, RE F, SESANA S, et al. Effect of nanoparticles binding β-amyloid peptide on nitric oxide production by cultured endothelial cells and macrophages[J]. Int J Nanomedicine, 2013, 8(1):1335-1347.
|
29. |
TAITE L J, YANG P, JUN H W, et al. Nitric oxide-releasing polyurethane-PEG copolymer containing the YIGSR peptide promotes endothelialization with decreased platelet adhesion[J]. J Biomed Mater Res B Appl Biomater, 2008, 84(1):108-116.
|
30. |
KUSHWAHA M, ANDERSON J M, BOSWORTH C A, et al. A nitric oxide releasing, self assembled peptide amphiphile matrix that mimics native endothelium for coating implantable cardiovascular devices[J]. Biomaterials, 2010, 31(7):1502-1508.
|
31. |
GALLO A, MANI G. A stent for co-delivering paclitaxel and nitric oxide from abluminal and luminal surfaces:Preparation, surface characterization, and in vitro drug release studies[J]. Appl Surf Sci, 2013, 279(15):216-232.
|
32. |
TUGULU S, SILACCI P, STERGIOPULOS N, et al. RGD-Functionalized polymer brushes as substrates for the integrin specific adhesion of human umbilical vein endothelial cells[J]. Biomaterials, 2007, 28(16):2536-2546.
|
33. |
JONER M, CHENG Qi, SCHÖNHOFER-MERL S, et al. Polymer-free immobilization of a cyclic RGD peptide on a nitinol stent promotes integrin-dependent endothelial coverage of strut surfaces[J]. J Biomed Mater Res B Appl Biomater, 2012, 100(3):637-645.
|
34. |
WEI Yu, JI Ying, XIAO Linlin, et al. Surface engineering of cardiovascular stent with endothelial cell selectivity for in vivo re-endothelialisation[J]. Biomaterials, 2013, 34(11):2588-2599.
|
35. |
MONCHAUX E, VERMETTE P. Bioactive microarrays immobilized on low-fouling surfaces to study specific endothelial cell adhesion[J]. Biomacromolecules, 2007, 8(11):3668-3673.
|
36. |
纪璎. 反应性羧酸甜菜碱两性离子共聚物构建内皮细胞选择性功能界面研究[D].杭州:浙江大学,2012.
|
37. |
PETERSEN S, STROHBACH A, BUSCH R, et al. Site-selective immobilization of anti-CD34 antibodies to poly(l-lactide) for endovascular implant surfaces[J]. J Biomed Mater Res B Appl Biomater, 2014, 102(2):345-355.
|
38. |
NINOMIYA K, KANEDA K, KAWASHIMA S, et al. Cell-SELEX based selection and characterization of DNA aptamer recognizing human hepatocarcinoma[J]. Bioorg Med Chem Lett, 2013, 23(6):1797-1802.
|
39. |
叶崎, 丁劲松.核酸适配体在分子影像学中的应用研究进展[J].生物医学工程学杂志,2012,29(6):1230-1234.
|
40. |
HOFFMANN J, PAUL A, HARWARDT M, et al. Immobilized DNA aptamers used as potent attractors for porcine endothelial precursor cells[J]. J Biomed Mater Res A, 2008, 84(3):614-621.
|