1. |
EADIE L H, TAYLOR P, GIBSON A P. A systematic review of computer-assisted diagnosis in diagnostic cancer imaging[J]. Eur J Radiol, 2012, 81(1):e70-e76.
|
2. |
LI Feng. Potential clinical impact of advanced imaging and computer-aided diagnosis in chest radiology:importance of radiologist's role and successful observer study[J]. Radiol Phys Technol, 2015, 8(2):161-173.
|
3. |
BOUZIN C, LAMBA SAINI M, KHAING K K, et al. Digital pathology:elementary, rapid and reliable automated image analysis[J]. Histopathology, 2015, doi:10.1111/his.12867.
|
4. |
BOURZAC K. Software:the computer will see you now[J]. Nature, 2013, 502(7473):S92-S94.
|
5. |
WIESMANN V, FRANZ D, HELD C, et al. Review of free software tools for image analysis of fluorescence cell micrographs[J]. J Microsc, 2015, 257(1):39-53.
|
6. |
SHINDE V, BURKE K E, CHAKRAVARTY A, et al. Applications of pathology-assisted image analysis of immunohistochemistry-based biomarkers in oncology[J]. Vet Pathol, 2014, 51(1):292-303.
|
7. |
CHAN J K. The wonderful colors of the hematoxylin-eosin stain in diagnostic surgical pathology[J]. Int J Surg Pathol, 2014, 22(1):12-32.
|
8. |
HE Lei, LONG L R, ANTANI S, et al. Histology image analysis for carcinoma detection and grading[J]. Comput Methods Programs Biomed, 2012, 107(3):538-556.
|
9. |
VETA M, PLUIM J P, VAN DIEST P J, et al. Breast cancer histopathology image analysis:a review[J]. IEEE Trans Biomed Eng, 2014, 61(5):1400-1411.
|
10. |
RITTER S, MARGULIES K B. Emerging tools for computer-aided diagnosis and prognostication[J]. J Clin Trials, 2014, 4(2):e117.
|
11. |
COATES A S, WINER E P, GOLDHIRSCH A, et al. Tailoring therapies——improving the management of early breast cancer:St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015[J]. Ann Oncol, 2015, 26(8):1533-1546.
|
12. |
Matsumoto A, Jinno H, Ando T, et al. Biological markers of invasive breast cancer[J]. Jpn J Clin Oncol, 2015, pii:hyv153.
|
13. |
NAGAO T, KINOSHITA T, HOJO T, et al. The differences in the histological types of breast cancer and the response to neoadjuvant chemotherapy:the relationship between the outcome and the clinicopathological characteristics[J]. Breast, 2012, 21(3):289-295.
|
14. |
ZHANG Rui, CHEN Huijiao, WEI Bing, et al. Reproducibility of the Nottingham modification of the Scarff-Bloom-Richardson histological grading system and the complementary value of Ki-67 to this system[J]. Chin Med J (Engl), 2010, 123(15):1976-1982.
|
15. |
BASAVANHALLY A, GANESAN S, FELDMAN M, et al. Multi-field-of-view framework for distinguishing tumor grade in ER+ breast cancer from entire histopathology slides[J]. IEEE Trans Biomed Eng, 2013, 60(8):2089-2099.
|
16. |
VETA M, KORNEGOOR R, HUISMAN A, et al. Prognostic value of automatically extracted nuclear morphometric features in whole slide images of male breast cancer[J]. Mod Pathol, 2012, 25(12):1559-1565.
|
17. |
BASAVANHALLY A, VISWANATH S, MADABHUSHI A. Predicting classifier performance with limited training data:applications to computer-aided diagnosis in breast and prostate cancer[J]. PLoS One, 2015, 10(5):e0117900.
|
18. |
SOYSAL S D, TZANKOV A, MUENST S E. Role of the tumor microenvironment in breast cancer[J]. Pathobiology, 2015, 82(3-4):142-152.
|
19. |
MATSUMOTO H, KOO S L, DENT R, et al. Role of inflammatory infiltrates in triple negative breast cancer[J]. J Clin Pathol, 2015, 68(7):506-510.
|
20. |
PARK S Y, KIM H M, KOO J S. Differential expression of cancer-associated fibroblast-related proteins according to molecular subtype and stromal histology in breast cancer[J]. Breast Cancer Res Treat, 2015, 149(3):727-741.
|
21. |
HEINDL A, NAWAZ S, YUAN Yinyin. Mapping spatial heterogeneity in the tumor microenvironment:a new era for digital pathology[J]. Lab Invest, 2015, 95(4):377-384.
|
22. |
YUAN Yinyin. Modelling the spatial heterogeneity and molecular correlates of lymphocytic infiltration in triple-negative breast cancer[J]. J R Soc Interface, 2015, 12(13):20141153.
|
23. |
KRISHNAMURTHY S, MATHEWS K, MCCLURE S, et al. Multi-institutional comparison of whole slide digital imaging and optical microscopy for interpretation of hematoxylin-eosin-stained breast tissue sections[J]. Arch Pathol Lab Med, 2013, 137(12):1733-1739.
|
24. |
KOTHARI S, PHAN J H, STOKES T H, et al. Pathology imaging informatics for quantitative analysis of whole-slide images[J]. J Am Med Inform Assoc, 2013, 20(6):1099-1108.
|
25. |
KHAN A M, RAJPOOT N, TREANOR D, et al. A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution[J]. IEEE Trans Biomed Eng, 2014, 61(6):1729-1738.
|
26. |
CHI Jianning, ERAMIAN M. Enhancement of textural differences based on morphological component analysis[J]. IEEE Trans Image Process, 2015, 24(9):2671-2684.
|
27. |
ELSAWAF Z, SINN H P, ROM J, et al. Biological subtypes of triple-negative breast cancer are associated with distinct morphological changes and clinical behaviour[J]. Breast, 2013, 22(5):986-992.
|
28. |
PETUSHI S, GARCIA F U, HABER M M, et al. Large-scale computations on histology images reveal grade-differentiating parameters for breast cancer[J]. BMC Med Imaging, 2006, 6:14.
|
29. |
BUNYAK F, HAFIANE A, PALANIAPPAN K. Histopathology tissue segmentation by combining fuzzy clustering with multiphase vector level sets[J]. Adv Exp Med Biol, 2011, 696:413-424.
|
30. |
BASAVANHALLY A N, GANESAN S, AGNER S, et al. Computerized image-based detection and grading of lymphocytic infiltration in HER2+ breast cancer histopathology[J]. IEEE Trans Biomed Eng, 2010, 57(3):642-653.
|
31. |
VETA M, VAN DIEST P J, KORNEGOOR R, et al. Automatic nuclei segmentation in H&E stained breast cancer histopathology images[J]. PLoS One, 2013, 8(7):e70221.
|
32. |
XU Jun, XIANG Lei, LIU Qingshan, et al. Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images[J]. IEEE Trans Med Imaging, 2016, 35(1):119-130.
|
33. |
QI Xin, XING Fuyong, FORAN D J, et al. Robust segmentation of overlapping cells in histopathology specimens using parallel seed detection and repulsive level set[J]. IEEE Trans Biomed Eng, 2012, 59(3):754-765.
|
34. |
ALI S, MADABHUSHI A. An integrated region-, boundary-, shape-based active contour for multiple object overlap resolution in histological imagery[J]. IEEE Trans Med Imaging, 2012, 31(7):1448-1460.
|
35. |
WIENERT S, HEIM D, SAEGER K, et al. Detection and segmentation of cell nuclei in virtual microscopy images:a minimum-model approach[J]. Sci Rep, 2012, 2:503.
|
36. |
FATAKDAWALA H, XU Jun, BASAVANHALLY A, et al. Expectation-maximization-driven geodesic active contour with overlap resolution (EMaGACOR):application to lymphocyte segmentation on breast cancer histopathology[J]. IEEE Trans Biomed Eng, 2010, 57(7):1676-1689.
|
37. |
YUAN Yinyin, FAILMEZGER H, RUEDA O M, et al. Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling[J]. Sci Transl Med, 2012, 4(157):157ra143.
|
38. |
ROUX L, RACOCEANU D, LOMÉNIE N, et al. Mitosis detection in breast cancer histological images An ICPR 2012 contest[J]. J Pathol Inform, 2013, 4:8.
|
39. |
VETA M, VAN DIEST P J, WILLEMS S M, et al. Assessment of algorithms for mitosis detection in breast cancer histopathology images[J]. Med Image Anal, 2015, 20(1):237-248.
|
40. |
CIREŞAN D C, GIUSTI A, GAMBARDELLA L M, et al. Mitosis detection in breast cancer histology images with deep neural networks[J]. Med Image Comput Comput Assist Interv, 2013, 16(Pt 2):411-418.
|
41. |
KAWALKAR P, TALMALE G. Review paper on histopathological image analysis approach for automatic detection of glandular structures in human tissue[C]//2015 International Conference on Pervasive Computing (ICPC). Pune:2015:1-5.
|
42. |
RATHOD P, KENDHE A. Review paper on detection of overlapped glandular structures for disease diagnosis in human body[C]. 2015 International Conference on Pervasive Computing (ICPC). Pune:2015:1-4.
|
43. |
DALLE J R, LEOW W K, RACOCEANU D, et al. Automatic breast cancer grading of histopathological images[J]. Conf Proc IEEE Eng Med Biol Soc, 2008:3052-3055.
|
44. |
NAIK S, DOYLE S, AGNER S, et al. Automated gland and nuclei segmentation for grading of prostate and breast cancer histopathology[C]//5th IEEE International Symposium on Biomedical Imaging:From Nano to Macro, 2008. ISBI 2008. Paris:2008:284-287.
|
45. |
XU Jun, JANOWCZYK A, CHANDRAN S, et al. A high-throughput active contour scheme for segmentation of histopathological imagery[J]. Med Image Anal, 2011, 15(6):851-862.
|
46. |
BASAVANHALLY A, YU E, XU Jun, et al. Incorporating domain knowledge for tubule detection in breast histopathology using O'Callaghan neighborhoods[C]. Proc. SPIE Medical Imaging 2011, 7963:796310.
|
47. |
IRSHAD H. Automated mitosis detection in histopathology using morphological and multi-channel statistics features[J]. J Pathol Inform, 2013, 4:10.
|
48. |
BOUZAS D, ARVANITOPOULOS N, TEFAS A. Graph embedded nonparametric mutual information for supervised dimensionality reduction[J]. IEEE Trans Neural Netw Learn Syst, 2015, 26(5):951-963.
|
49. |
LOUKAS C, KOSTOPOULOS S, TANOGLIDI A, et al. Breast cancer characterization based on image classification of tissue sections visualized under low magnification[J]. Comput Math Methods Med, 2013, 2013:829461.
|
50. |
TUTAC A E, RACOCEANU D, PUTTI T, et al. Knowledge-guided semantic indexing of breast cancer histopathology images[C]//International Conference on BioMedical Engineering and Informatics, 2008. BMEI 2008. Sanya:2008, 2:107-112.
|
51. |
CHEN Jiamei, QU A P, WANG Linwei, et al. New breast cancer prognostic factors identified by computer-aided image analysis of HE stained histopathology images[J]. Sci Rep, 2015, 5:10690.
|
52. |
BECK A H, SANGOI A R, LEUNG S, et al. Systematic analysis of breast cancer morphology uncovers stromal features associated with survival[J]. Sci Transl Med, 2011, 3(108):108ra113.
|
53. |
NAWAZ S, HEINDL A, KOELBLE K, et al. Beyond immune density:critical role of spatial heterogeneity in estrogen receptor-negative breast cancer[J]. Mod Pathol, 2015, 28(6):766-777.
|
54. |
BASAVANHALLY A, FELDMAN M, SHIH N, et al. Multi-field-of-view strategy for image-based outcome prediction of multi-parametric estrogen receptor-positive breast cancer histopathology:Comparison to Oncotype DX[J]. J Pathol Inform, 2011, 2:S1.
|
55. |
WANG Chao, PÉCOT T, ZYNGER D L, et al. Identifying survival associated morphological features of triple negative breast Cancer using multiple datasets[J]. J Am Med Inform Assoc, 2013, 20(4):680-687.
|