1. |
Parton R G, Collins B M. Unraveling the architecture of caveolae. Proc Natl Acad Sci U S A, 2016, 113(50): 14170-14172.
|
2. |
Cheng J P, Nichols B J. Caveolae: one function or many?. Trends Cell Biol, 2016, 26(3): 177-189.
|
3. |
Fridolfsson H N, Roth D M, Insel P A, et al. Regulation of intracellular signaling and function by caveolin. FASEB J, 2014, 28(9): 3823-3831.
|
4. |
Caravia L, Dudau M, Gherghiceanu M, et al. Could caveolae be acting as warnings of mitochondrial ageing? Mech Ageing Dev, 2015, 146-148: 81-87.
|
5. |
Shiroto T, Romero N, Sugiyama T, et al. Caveolin-1 is a critical determinant of autophagy, metabolic switching, and oxidative stress in vascular endothelium. PLoS One, 2014, 9(2): e87871.
|
6. |
Schilling J M, Patel H H. Non-canonical roles for caveolin in regulation of membrane repair and mitochondria: implications for stress adaptation with age. J Physiol, 2016, 594(16): 4581-4589.
|
7. |
Bartholomew J N, Galbiati F. Mapping of oxidative stress response elements of the caveolin-1 promoter. Methods Mol Biol, 2010, 594: 409-423.
|
8. |
Coelho-Santos V, Socodato R, Portugal C, et al. Methylphenidate-triggered ROS generation promotes caveolae-mediated transcytosis via Rac1 signaling and c-Src-dependent caveolin-1 phosphory-lation in human brain endothelial cells. Cell Mol Life Sci, 2016, 73(24): 4701-4716.
|
9. |
Volonte D, Galbiati F. Polymerase Ⅰ and transcript release factor (PTRF)/cavin-1 is a novel regulator of stress-induced premature senescence. J Biol Chem, 2011, 286(33): 28657-28661.
|
10. |
Eiró N, Fernandez-Garcia B, Vázquez J, et al. A phenotype from tumor stroma based on the expression of metalloproteases and their inhibitors, associated with prognosis in breast cancer. Oncoimmunology, 2015, 4(7): e992222.
|
11. |
Kim H M, Jung W H, Koo J S. Expression of cancer-associated fibroblast related proteins in metastatic breast cancer: an immunohistochemical analysis. J Transl Med, 2015, 13: 222.
|
12. |
Park C K, Jung W H, Koo J S. Expression of cancer-associated fibroblast-related proteins differs between invasive lobular carcinoma and invasive ductal carcinoma. Breast Cancer Res Treat, 2016, 159(1): 55-69.
|
13. |
Zhu Xue, Wang Ke, Zhang Kai, et al. Galectin-1 knockdown in carcinoma-associated fibroblasts inhibits migration and invasion of human MDA-MB-231 breast cancer cells by modulating MMP-9 expression. Acta Biochim Biophys Sin (Shanghai), 2016, 48(5): 462-467.
|
14. |
Yu Y, Xiao C H, Tan L D, et al. Cancer-associated fibroblasts induce epithelial-mesenchymal transition of breast cancer cells through paracrine TGF-β signalling. Br J Cancer, 2014, 110(3): 724-732.
|
15. |
Katanov C, Lerrer S, Liubomirski Y, et al. Regulation of the inflammatory profile of stromal cells in human breast cancer: prominent roles for TNF-α and the NF-κB pathway. Stem Cell Res Ther, 2015, 6: 87.
|
16. |
Kubo N, Araki K, Kuwano H, et al. Cancer-associated fibroblasts in hepatocellular carcinoma. World J Gastroenterol, 2016, 22(30): 6841-6850.
|
17. |
Folgueira M A, Maistro S, Katayama M L, et al. Markers of breast cancer stromal fibroblasts in the primary tumour site associated with lymph node metastasis: a systematic review including our case series. Biosci Rep, 2013, 33(6). pii: e00085..
|
18. |
Shan Tao, Chen Shuo, Chen Xi, et al. Prometastatic mechanisms of CAF-mediated EMT regulation in pancreatic cancer cells. Int J Oncol, 2017, 50(1): 121-128.
|
19. |
Pavlides S, Whitaker-Menezes D, Castello-Cros R, et al. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle, 2009, 8(23): 3984-4001.
|
20. |
Somasundaram V, Nadhan R, Hemalatha S K, et al. Nitric oxide and reactive oxygen species: Clues to target oxidative damage repair defective breast cancers. Crit Rev Oncol Hematol, 2016, 101: 184-192.
|
21. |
Shan Tao, Chen Shuo, Chen Xi, et al. Cancer-associated fibroblasts enhance pancreatic cancer cell invasion by remodeling the metabolic conversion mechanism. Oncol Rep, 2017, 37(4): 1971-1979.
|
22. |
Morais-Santos F, Granja S, Miranda-Gonçalves V, et al. Targeting lactate transport suppresses in <italic>vivo</italic> breast tumour growth. Oncotarget, 2015, 6(22): 19177-19189.
|
23. |
Martel F, Guedes M, Keating E. Effect of polyphenols on glucose and lactate transport by breast cancer cells. Breast Cancer Res Treat, 2016, 157(1): 1-11.
|
24. |
赵朋月, 刁路明, 陈洪雷. 基质窖蛋白-1 和肿瘤能量代谢的研究进展. 中华病理学杂志, 2012, 41(7): 498-5000.
|
25. |
Nwosu Z C, Ebert M P, Dooley S, et al. Caveolin-1 in the regulation of cell metabolism: a cancer perspective. Mol Cancer, 2016, 15(1): 71.
|