1. |
郭晋纲, 徐树明, 郑永明, 等. 一体化同步扫描 TOF-PET/MR 分子影像设备的进展. 中国医疗器械杂志, 2016, 40(4): 267-270, 274.
|
2. |
Musafargani S, Ghosh K K, Mishra S, et al. PET/MRI: a frontier in era of complementary hybrid imaging. Eur J Hybrid Imaging, 2018, 2(1): 12.
|
3. |
董硕, 李东, 吴天棋, 等. 一体化 PET-MR 设备中飞行时间技术和点扩展函数技术对PET图像质量的影响. 中国医学装备, 2018, 15(2): 1-5.
|
4. |
毕晓, 刘家金, 关志伟, 等. 基于磁共振成像 Dixon 序列和 CT 的衰减校正方法在心脏 PET 中的应用比较. 中国医学装备, 2019, 16(6): 33-37.
|
5. |
Lassen M L, Rasul S, Beitzke D, et al. Assessment of attenuation correction for myocardial PET imaging using combined PET/MRI. J Nucl Cardiol, 2019, 26(4): 1107-1118.
|
6. |
Grant A M, Deller T W, Khalighi M M, et al. NEMA NU 2-2012 performance studies for the SiPM-based ToF-PET component of the GE SIGNA PET/MR system. Med Phys, 2016, 43(5): 2334.
|
7. |
Delso G, Fürst S, Jakoby B, et al. Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med, 2011, 52(12): 1914-1922.
|
8. |
Zaidi H, Ojha N, Morich M, et al. Design and performance evaluation of a whole-body Ingenuity TF PET-MRI system. Phys Med Biol, 2011, 56(10): 3091-3106.
|
9. |
Hyafil F, Vigne J. Imaging inflammation in atherosclerotic plaques: just make it easy!. J Nucl Cardiol, 2019, 26(5): 1705-1708.
|
10. |
Mckenney-Drake M L, Territo P R, Salavati A, et al. (18)F-NaF PET imaging of early coronary artery calcification. JACC Cardiovasc Imaging, 2016, 9(5): 627-628.
|
11. |
Saraste A, Laitinen I, Weidl E, et al. Diet intervention reduces uptake of αvβ3 integrin-targeted PET tracer 18F-galacto-RGD in mouse atherosclerotic plaques. J Nucl Cardiol, 2012, 19(4): 775-784.
|
12. |
Xie Y, Jin Hang, Zeng Mengsu, et al. Coronary artery plaque imaging. Curr Atheroscler Rep, 2017, 19(9): 37.
|
13. |
Robson P M, Dweck M R, Trivieri M G, et al. Coronary artery PET/Mr imaging: feasibility, limitations, and solutions. JACC Cardiovasc Imaging, 2017, 10(10 Pt A): 1103-1112.
|
14. |
Fernández-Friera L, Fuster V, López-Melgar B, et al. Vascular inflammation in subclinical atherosclerosis detected by hybrid PET/MRI. J Am Coll Cardiol, 2019, 73(12): 1371-1382.
|
15. |
Catalano O, Moro G, Mori A, et al. Cardiac magnetic resonance in stable coronary artery disease: added prognostic value to conventional risk profiling. Biomed Res Int, 2018, 2018: 2806148.
|
16. |
Lipinski M J, Mcvey C M, Berger J S, et al. Prognostic value of stress cardiac magnetic resonance imaging in patients with known or suspected coronary artery disease: a systematic review and meta-analysis. J Am Coll Cardiol, 2013, 62(9): 826-838.
|
17. |
Vincenti G, Masci P G, Monney P, et al. Stress perfusion CMR in patients with known and suspected CAD: prognostic value and optimal ischemic threshold for revascularization. JACC Cardiovasc Imaging, 2017, 10(5): 526-537.
|
18. |
Naßenstein K, Nensa F, Schlosser T, et al. Cardiac MRI: T2-mapping versus T2-weighted dark-blood TSE imaging for myocardial edema visualization in acute myocardial infarction. Rofo, 2014, 186(2): 166-172.
|
19. |
Kero T, Johansson E, Engström M, et al. Evaluation of quantitative CMR perfusion imaging by comparison with simultaneous 15O-water-PET. J Nucl Cardiol, 2019. DOI: 10.1007/s12350-019-01810-z.
|
20. |
Hung G U, Ko K Y, LIN Cl, et al. Impact of initial myocardial perfusion imaging versus invasive coronary angiography on outcomes in coronary artery disease: a nationwide cohort study. Eur J Nucl Med Mol Imaging, 2018, 45(4): 567-574.
|
21. |
Driessen R S, Raijmakers P G, Stuijfzand W J, et al. Myocardial perfusion imaging with PET. Int J Cardiovasc Imaging, 2017, 33(7): 1021-1031.
|
22. |
Sadeghi M M. 2018 SNMMI highlights lecture: cardiovascular nuclear and molecular imaging. J Nucl Med, 2018, 59(9): 9N-15N.
|
23. |
Valenta I, Quercioli A, Schindler T H. Diagnostic value of PET-measured longitudinal flow gradient for the identification of coronary artery disease. JACC Cardiovasc Imaging, 2014, 7(4): 387-396.
|
24. |
Khalaf S, Chamsi-Pasha M, Al-Mallah M H. Assessment of myocardial viability by PET. Curr Opin Cardiol, 2019, 34(5): 466-472.
|
25. |
Rischpler C, Langwieser N, Souvatzoglou M, et al. PET/MRI early after myocardial infarction: evaluation of viability with late Gadolinium enhancement transmurality vs. 18F-FDG uptake. Eur Heart J Cardiovasc Imaging, 2015, 16(6): 661-669.
|
26. |
Beitzke D, Rasul S, Lassen M L, et al. Assessment of myocardial viability in ischemic heart disease by PET/MRI: comparison of left ventricular perfusion, hibernation, and scar burden. Acad Radiol, 2020, 27(2): 188-197.
|
27. |
Kunze K P, Nekolla S G, Rischpler C, et al. Myocardial perfusion quantification using simultaneously acquired 13 NH3-ammonia PET and dynamic contrast-enhanced MRI in patients at rest and stress. Magn Reson Med, 2018, 80(6): 2641-2654.
|
28. |
Masuda A, Nemoto A, Yamaki T, et al. Assessment of myocardial viability of a patient with old myocardial infarction by (18)F-fluorodeoxyglucose PET/MRI. J Nucl Cardiol, 2018, 25(4): 1423-1426.
|
29. |
Chareonthaitawee P, Beanlands R S, Chen W, et al. Joint SNMMI-ASNC expert consensus document on the role of (18)F-FDG PET/CT in cardiac sarcoid detection and therapy monitoring. J Nucl Med, 2017, 58(8): 1341-1353.
|
30. |
Lebasnier A, Legallois D, Bienvenu B, et al. Diagnostic value of quantitative assessment of cardiac (18)F-fluoro-2-deoxyglucose uptake in suspected cardiac sarcoidosis. Ann Nucl Med, 2018, 32(5): 319-327.
|
31. |
Vita T, Okada D R, Veillet-Chowdhury M, et al. Complementary value of cardiac magnetic resonance imaging and positron emission tomography/computed tomography in the assessment of cardiac sarcoidosis. Circ Cardiovasc Imaging, 2018, 11(1): e007030.
|
32. |
Wada K, Niitsuma T, Yamaki T, et al. Simultaneous cardiac imaging to detect inflammation and scar tissue with (18)F-fluorodeoxyglucose PET/MRI in cardiac sarcoidosis. J Nucl Cardiol, 2016, 23(5): 1180-1182.
|
33. |
Dweck M R, Abgral R, Trivieri M G, et al. Hybrid magnetic resonance imaging and positron emission tomography with fluorodeoxyglucose to diagnose active cardiac sarcoidosis. JACC Cardiovasc Imaging, 2018, 11(1): 94-107.
|
34. |
Birnie D H, Nery P B, Ha A C, et al. Cardiac Sarcoidosis. J Am Coll Cardiol, 2016, 68(4): 411-421.
|
35. |
Wisenberg G, Thiessen J D, Pavlovsky W, et al. Same day comparison of PET/CT and PET/MR in patients with cardiac sarcoidosis. J Nucl Cardiol, 2019.
|
36. |
Gormsen L C, Haraldsen A, Kramer S, et al. A dual tracer (68)Ga-DOTANOC PET/CT and (18)F-FDG PET/CT pilot study for detection of cardiac sarcoidosis. EJNMMI Res, 2016, 6(1): 52.
|
37. |
Raina S, Lensing S Y, Nairooz R S, et al. Prognostic value of late Gadolinium enhancement CMR in systemic amyloidosis. JACC Cardiovasc Imaging, 2016, 9(11): 1267-1277.
|
38. |
Lee S P, Lee E S, Choi H, et al. 11C-Pittsburgh B PET imaging in cardiac amyloidosis. JACC Cardiovasc Imaging, 2015, 8(1): 50-59.
|
39. |
Pilebro B, Arvidsson S, Lindqvist P, et al. Positron emission tomography (PET) utilizing Pittsburgh compound B (PIB) for detection of amyloid heart deposits in hereditary transthyretin amyloidosis (ATTR). J Nucl Cardiol, 2018, 25(1): 240-248.
|
40. |
Trivieri M G, Dweck M R, Abgral R, et al. 18F-Sodium fluoride PET/MR for the assessment of cardiac amyloidosis. J Am Coll Cardiol, 2016, 68(24): 2712-2714.
|
41. |
Abulizi M, Sifaoui I, Wuliya-Gariepy M, et al. (18)F-sodium fluoride PET/MRI myocardial imaging in patients with suspected cardiac amyloidosis. J Nucl Cardiol, 2019.
|
42. |
Nensa F, Kloth J, Tezgah E, et al. Feasibility of FDG-PET in myocarditis: comparison to CMR using integrated PET/MRI. J Nucl Cardiol, 2018, 25(3): 785-794.
|