1. |
Crea F, Camici P G. Bairey Merz C N Coronary microvascular dysfunction: an update. Eur Heart J, 2014, 35(17): 1101-1111.
|
2. |
Xu J, Lo S, Juergens C P, et al. Assessing coronary microvascular dysfunction in ischaemic heart disease: little things can make a big difference. Heart Lung Circ, 2020, 29(1): 118-127.
|
3. |
唐莉莉, 姚道阔. 冠状动脉微循环障碍与心肌缺血关系的研究进展. 心血管病学进展, 2017, 38(6): 648-651.
|
4. |
Ong P, Safdar B, Seitz A, et al. Diagnosis of coronary microvascular dysfunction in the clinic. Cardiovasc Res, 2020, 116(4): 841-855.
|
5. |
Spyridopoulos I, Arthur H M. Microvessels of the heart: Formation, regeneration and dysfunction. Microcirculation, 2017, 24(1): e12338.
|
6. |
Zhang Yudong, Li Meijiao, Qi Liang, et al. Hypertrophic cardiomyopathy: cardiac structural and microvascular abnormalities as evaluated with multi-parametric MRI. Eur J Radiol, 2015, 84(8): 1480-1486.
|
7. |
《中国冠状动脉血流储备分数测定技术临床路径专家共识》专家组. 中国冠状动脉血流储备分数测定技术临床路径专家共识. 中国介入心脏病学杂志, 2019, 27(3): 121-133.
|
8. |
Ge Xinyang, Liu Youjun, Tu Shengxian, et al. Model-based analysis of the sensitivities and diagnostic implications of FFR and CFR under various pathological conditions. Int J Numer Method Biomed Eng, 2019: e3257.
|
9. |
Garcia D, Harbaoui B, van de Hoef T P, et al. Relationship between FFR, CFR and coronary microvascular resistance—Practical implications for FFR-guided percutaneous coronary intervention. PLoS One, 2019, 14(1): e0208612.
|
10. |
王伟民, 刘健, 赵红, 等. 心肌血流储备分数评价狭窄冠状动脉功能的临床意义. 中华心血管病杂志, 2002, 30(5): 276-278.
|
11. |
鲁硕, 侯凤霞, 于晓波. 冠脉血流储备分数对急性心肌梗死急诊 PCI 术后冠脉微循环功能的评价. 中西医结合心血管病电子杂志, 2017, 5(36): 90-91.
|
12. |
Tremmel J A, Fearon W F, Lee B K, et al. Response to letters regarding article, “Invasive evaluation of patients with angina in the absence of obstructive coronary artery disease”. Circulation, 2015, 132(20): 224-226.
|
13. |
Park S, Baek Y, Lee M, et al. Comprehensive assessment of microcirculation after primary percutaneous intervention in ST segment elevation myocardial infarction. Coron Artery Dis, 2016, 27(1): 34-39.
|
14. |
You W, Yang Z J, Ye F. Value of index of microcirculatory resistance for early prediction of periprocedural myocardial microcirculatory injury after percutaneous coronary intervention in patients with coronary heart disease. Zhonghua Xin Xue Guan Bing Za Zhi, 2019, 47(11): 894-900.
|
15. |
向义桂, 张前燕, 熊青峰, 等. 微循环阻力指数与非心肌梗死冠心病病人心肌微循环状态的相关性分析. 中西医结合心脑血管病杂志, 2020, 18(5): 792-796.
|
16. |
Schindler T H, Dilsizian V. Coronary microvascular dysfunction: clinical considerations and noninvasive diagnosis. JACC Cardiovasc Imaging, 2020, 13(1): 140-155.
|
17. |
Mathew R C, Bourque J M, Salerno M, et al. Cardiovascular imaging techniques to assess microvascular dysfunction. JACC Cardiovasc Imaging, 2019, 13(7).
|
18. |
Mayala H A, Bakari K H, Mkangala A, et al. The association of 18F-FDG PET/CT and biomarkers in confirming coronary microvascular dysfunction. BMC Res Notes, 2018, 11(1): 796.
|
19. |
Nose N, Fukushima K, Lapa C, et al. Assessment of coronary flow reserve using a combination of planar first-pass angiography and myocardial SPECT: Comparison with myocardial 15O-water PET. Int J Cardiol, 2016, 222(1): 209-212.
|
20. |
Klein R, Celiker-Guler E, Rotstein B H, et al. PET and SPECT tracers for myocardial perfusion imaging. Semin Nucl Med, 2020, 50(3): 208-218.
|
21. |
袁建伟, 冯彦林, 张培培, 等. SPECT/CT 心肌灌注显像在原发性微血管性心绞痛患者中的临床价值. 广东医学, 2016, 37(6): 841-844.
|
22. |
Ceyrat Q, Bordenave L, Couffinhal T, et al. A rapid protocol to evaluate coronary flow reserve with myocardial scintigraphy: A prospective study using Regadenoson. Médecine Nucléaire, 2020.
|
23. |
Sucato V, Evola S, Novo G, et al. Stable microvascular angina: instrumental evaluation of coronary microvascular dysfunction with coronary angiography and myocardial scintigraphy. Int J Cardiol, 2014, 171(3): e127-e128.
|
24. |
Niimi T, Nanasato M, Sugimoto M, et al. Evaluation of cadmium-zinc-telluride detector-based single-photon emission computed tomography for nuclear cardiology: a comparison with conventional Anger single-photon emission computed tomography. Nucl Med Mol Imaging (2010), 2017, 51(4): 331-337.
|
25. |
张涵, 秦珊珊, 樊鑫, 等. D-SPECT 在冠心病患者早期诊断和心功能评估中的价值. 同济大学学报: 医学版, 2019, 40(2): 152-156.
|
26. |
Senior R, Becher H, Monaghan M, et al. Clinical practice of contrast echocardiography: recommendation by the European Association of Cardiovascular Imaging (EACVI) 2017. Eur Heart J Cardiovasc Imaging, 2017, 18(11): 1205-1205a.
|
27. |
Eskandari M, Monaghan M. Contrast echocardiography in daily clinical practice. Herz, 2017, 42(3): 271-278.
|
28. |
Everaars H, de Waard G A, Driessen R S, et al. Doppler flow velocity and thermodilution to assess coronary flow reserve: a head-to-head comparison with [15O] H2O PET. JACC Cardiovasc Interv, 2018, 11(20): 2044-2054.
|
29. |
洪然. 心肌声学造影低机械指数实时超声成像法定量评价猪急性心肌梗死再灌注后冠脉微循环状态的研究. 呼和浩特: 内蒙古医科大学, 2019.
|
30. |
李亚琼, 田新桥. 心肌超声造影评价糖尿病心肌病微循环障碍的应用进展. 中华实用诊断与治疗杂志, 2020, 34(4): 423-425.
|
31. |
程可爱, 尹凤英, 王胜煌. 冠状动脉血流与心肌灌注CT评估方法与进展. 心脑血管病防治, 2020, 20(1): 96-97, 115.
|
32. |
Andreini D, Mushtaq S, Pontone G, et al. CT perfusion versus coronary CT angiography in patients with suspected in-stent restenosis or CAD progression. JACC Cardiovasc Imaging, 2020, 13(3): 732-742.
|
33. |
Tanabe Y, Kido T, Uetani T, 等. 动态 CT 灌注成像识别心肌缺血与梗死, 与心脏 MR 及 SPECT 进行比较. 国际医学放射学杂志, 2017, 40(1): 100.
|
34. |
Williams M C, Mirsadraee S, Dweck M R, et al. Computed tomography myocardial perfusion vs 15O-water positron emission tomography and fractional flow reserve. Eur Radiol, 2017, 27(3): 1114-1124.
|
35. |
Sorgaard M H, Kofoed K F, Linde J J, et al. Diagnostic accuracy of static CT perfusion for the detection of myocardial ischemia. J Cardiovasc Comput Tomogr, 2016, 10(6): 450-457.
|
36. |
Ho K T, Ong H Y, Tan G, et al. Dynamic CT myocardial perfusion measurements of resting and hyperaemic blood flow in low-risk subjects with 128-slice dual-source CT. Eur Heart J Cardiovasc Imaging, 2015, 16(3): 300-306.
|
37. |
李璐, 赵世华. 磁共振成像识别急性心肌梗死后微循环障碍的研究进展. 中华心血管病杂志, 2019, 47(4): 335-338.
|
38. |
Kotecha T, Martinez-Naharro A, Boldrini M, et al. Automated pixel-wise quantitative myocardial perfusion mapping by CMR to detect obstructive coronary artery disease and coronary microvascular dysfunction: validation against invasive coronary physiology. JACC Cardiovasc Imaging, 2019, 12(10): 1958-1969.
|
39. |
Taqueti V R, Di Carli M F. Coronary microvascular disease pathogenic mechanisms and therapeutic options: JACC state-of-the-art review. J Am Coll Cardiol, 2018, 72(21): 2625-2641.
|
40. |
Pontone G, Andreini D, Guaricci A I, et al. Association between haptoglobin phenotype and microvascular obstruction in patients with STEMI: a cardiac magnetic resonance study. JACC Cardiovasc Imaging, 2019, 12(6): 1007-1017.
|
41. |
Alkhalil M, Borlotti A, De Maria G L, et al. Hyper-acute cardiovascular magnetic resonance T1 mapping predicts infarct characteristics in patients with ST elevation myocardial infarction. J Cardiovasc Magn Reson, 2020, 22(1): 1-12.
|
42. |
Liu A, Wijesurendra R S, Liu J M, et al. Gadolinium-free cardiac MR stress T1-mapping to distinguish epicardial from microvascular coronary disease. J Am Coll Cardiol, 2018, 71(9): 957-968.
|
43. |
McAlindon E, Pufulete M, Harris J, et al. Microvascular dysfunction determines infarct characteristics in patients with reperfused ST-segment elevation myocardial infarction: The MICROcirculation in Acute Myocardial Infarction (MICRO-AMI) study. PloS one, 2018, 13(11): e0203750.
|
44. |
Sheng Xincheng, Qiao Zhiqing, Ge Heng, et al. Novel application of quantitative flow ratio for predicting microvascular dysfunction after ST-segment-elevation myocardial infarction. Catheter Cardiovasc Interv, 2020, 95(Suppl 1): 624-632.
|
45. |
Padro T, Manfrini O, Bugiardini R, et al. ESC Working Group on Coronary Pathophysiology and Microcirculation position paper on 'coronary microvascular dysfunction in cardiovascular disease'. Cardiovasc Res, 2020, 116(4): 741-755.
|