1. |
Sung H, Ferlay J, Siegel R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
|
2. |
蒲星月, 马原, 钟志刚. 2006-2020年中国女性乳腺癌死亡趋势分析——基于年龄-时期-出生队列模型. 卫生经济研究, 2023, 40(2): 28-33.
|
3. |
Perou C M, Therese Sørlie, Eisen M B, et al. Molecular portraits of human breast tumours. Nature, 2000, 490(6797): 747-752.
|
4. |
Parker J S, Mullins M, Cheang M C, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. Journal of Clinical Oncology, 2009, 27(8): 1160-1167.
|
5. |
Fan C, Oh D S, Wessels L, et al. Concordance among gene-expression–based predictors for breast cancer. New England Journal of Medicine, 2006, 355(6): 560-569.
|
6. |
Lin C Y, Ruan P, Li R, et al. Deep learning with evolutionary and genomic profiles for identifying cancer subtypes. Journal of Bioinformatics and Computational Biology, 2019, 17(3): 1940005.
|
7. |
Magaki S, Hojat S A, Wei B, et al. An introduction to the performance of immunohistochemistry. Methods Mol Biol, 2019, 1897: 289-298.
|
8. |
黄军豪, 廖天驰. 基于深度学习的乳腺癌分子亚型分类研究. 现代计算机, 2020(22): 3-8.
|
9. |
Waks A G, Winer E P. Breast cancer treatment: a review. JAMA, 2019, 321(3): 288-300.
|
10. |
颜锐, 陈丽萌, 李锦涛, 等. 基于深度学习和组织病理图像的癌症分类研究进展. 协和医学杂志, 2021, 12(5): 742-748.
|
11. |
雪峰豪, 蒋海波, 唐聃. 深度学习在健康医疗中的应用研究综述. 计算机科学, 2023, 50(4): 1-15.
|
12. |
Alharbi F, Vakanski A. Machine learning methods for cancer classification using gene expression data: a review. Bioengineering, 2023, 10(2): 173.
|
13. |
Gao F, Wang W, Tan M, et al. DeepCC: a novel deep learning-based framework for cancer molecular subtype classification. Oncogenesis, 2019, 8(9): 44.
|
14. |
Mostavi M, Chiu Y C, Huang Y, et al. Convolutional neural network models for cancer type prediction based on gene expression. BMC Medical Genomics, 2020, 13(Suppl 5): 44.
|
15. |
Rhee S , Seo S , Kim S . Hybrid approach of relation network and localized graph convolutional filtering for breast cancer subtype classification. arXiv preprint, 2017. arXiv.1711.05859.
|
16. |
Lee S, Lim S, Lee T, et al. Cancer subtype classification and modeling by pathway attention and propagation. Bioinformatics, 2020, 36(12): 3818-3824.
|
17. |
Li B, Wang T, Nabavi S. Cancer molecular subtype classification by graph convolutional networks on multi-omics data//Proceedings of the 12th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics, Gainesville Florida: SIGBIOM, 2021(50): 1-9.
|
18. |
Kipf T N , Welling M. Semi-supervised classification with graph convolutional networks. arXiv preprint, 2017. arXiv.1609.02907.
|
19. |
Curtis C, Shah S P, Chin S F, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature, 2012, 486(7403): 346-352.
|
20. |
Pereira B, Chin S F, Rueda O M, et al. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nature Communications, 2016, 7: 11479.
|
21. |
Gao J, Aksoy B A, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Science Signaling, 2013, 6(269): p11.
|
22. |
Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Research, 2015, 43(D1): D447-D452.
|
23. |
Lee J, Lee I, Kang J. Self-attention graph pooling//36th International Conference on Machine Learning (ICML 2019), California: International Machine Learning Society (IMLS), 2019: 6661-6670.
|
24. |
Fey M, Lenssen J E. Fast graph representation learning with PyTorch geometric. arXiv preprint, 2019. arXiv.1903.02428.
|
25. |
Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in Python. JMLR, 2011(12): 2825-2830.
|
26. |
Holliday D L, Speirs V. Choosing the right cell line for breast cancer research. Breast Cancer Research, 2011, 13(4): 215.
|
27. |
Prat A, Parker J S, Karginova O, et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Research, 2010, 12(5): R68.
|
28. |
Lupat R, Perera R, Loi S, et al. Moanna: multi-omics autoencoder-based neural network algorithm for predicting breast cancer subtypes. IEEE Access, 2023, 11: 10912-10924.
|
29. |
El-Nabawy A, Belal N A, El-Bendary N. A cascade deep forest model for breast cancer subtype classification using multi-omics data. Mathematics, 2021, 9(13): 1574.
|
30. |
Mohaiminul Islam M, Huang S, Ajwad R, et al. An integrative deep learning framework for classifying molecular subtypes of breast cancer. Computational and Structural Biotechnology Journal, 2020, 18: 2185-2199.
|
31. |
Chen R, Yang L, Goodison S, et al. Deep-learning approach to identifying cancer subtypes using high-dimensional genomic data. Bioinformatics, 2020, 36(5): 1476-1483.
|