1. |
Gatzioufas Z, Seitz B. Determination of corneal biomechanical properties in vivo: a review. Mater Sci Technol, 2015, 31(2): 188-196..
|
2. |
Kling S, Hafezi F. Corneal biomechanics-a review. Ophthalmic Physiol Opt, 2017, 37(3): 240-252..
|
3. |
Xue C, Xiang Y, Shen M, et al. Preliminary investigation of the mechanical anisotropy of the normal human corneal stroma. J Ophthalmol, 2018, 2018: 1-7..
|
4. |
Roberts C J, Dupps W J. Biomechanics of corneal ectasia and biomechanical treatments. J Cataract Refract Surg, 2014, 40(6): 991-998..
|
5. |
Kerautret J, Colin J, Touboul D, et al. Biomechanical characteristics of the ectatic cornea. J Cataract Refract Surg, 2008, 34(3): 510-513..
|
6. |
Mikula E, Winkler M, Juhasz T, et al. Axial mechanical and structural characterization of keratoconus corneas. Exp Eye Res, 2018, 175: 14-19..
|
7. |
Ambekar R, Toussaint Jr. K C, Wagoner Johnson A. The effect of keratoconus on the structural, mechanical, and optical properties of the cornea. J Mech Behav Biomed Mater, 2011, 4(3): 223-236..
|
8. |
Qian X, Ma T, Shih C-C, et al. Ultrasonic microelastography to assess biomechanical properties of the cornea. IEEE Trans Biomed Eng, 2019, 66(3): 647-655..
|
9. |
Mikula E R, Jester J V, Juhasz T. Measurement of an elasticity map in the human cornea. Investig Ophthalmol Vis Sci, 2016, 57(7): 3282..
|
10. |
赵科超, 王晓君, 陈维毅, 等. 正常角膜与圆锥角膜粘弹性的对比研究. 生物医学工程学杂志, 2019, 36(4): 613-618..
|
11. |
Edmund C. Corneal elasticity and ocular rigidity in normal and keratoconic eyes. Acta Ophthalmol, 1988, 66(2): 134-140..
|
12. |
Moghadam F A, Jahromy M H, Fazelipour S, et al. Induction of experimental keratoconus in mice using collagenase. Physiol Pharmacol, 13(2): 209-215..
|
13. |
Qiao J, Li H, Tang Y, et al. A rabbit model of corneal ectasia generated by treatment with collagenase type II. BMC Ophthalmol, 2018, 18(1): 94..
|
14. |
Hu Y, Huang Y, Chen Y, et al. Study on patterned photodynamic cross-linking for keratoconus. Exp Eye Res, 2021, 204: 108450..
|
15. |
Wei J, He R, Wang X, et al. The corneal ectasia model of rabbit: a validity and stability study. Bioengineering, 2023, 10(4): 479..
|
16. |
乔静, 李海丽, 宋文静, 等. Ⅱ型胶原酶构建兔角膜离体扩张模型. 中华眼视光学与视觉科学杂志, 2016, 18(5): 275-279..
|
17. |
乔静, 李海丽, 宋文静, 等. Ⅱ型胶原酶构建在体角膜扩张动物模型的可行性研究. 中华实验眼科杂志, 2017, 35(11): 984-989..
|
18. |
陈昕妍, 秦晓, 张海霞, 等. Ⅱ型胶原酶对兔角膜生物力学特性的影响. 中国组织工程研究, 2019, 23(22): 3556-3561..
|
19. |
Flockerzi E, Häfner L, Xanthopoulou K, et al. Reliability analysis of successive corneal Visualization Scheimpflug technology measurements in different keratoconus stages. Acta Ophthalmol, 2022, 100(1): e83-e90..
|
20. |
Yang K, Xu L, Fan Q, et al. Evaluation of new Corvis ST parameters in normal, post-LASIK, post-LASIK keratectasia and keratoconus eyes. Sci Rep, 2020, 10(1): 5676..
|
21. |
Heidari Z, Hashemi H, Mohammadpour M, et al. Evaluation of corneal topographic, tomographic and biomechanical indices for detecting clinical and subclinical keratoconus: a comprehensive three-device study. Int J Ophthalmol, 2021, 14(2): 228-239..
|
22. |
Zhang H, Tian L, Guo L, et al. Comprehensive evaluation of corneas from normal, forme fruste keratoconus and clinical keratoconus patients using morphological and biomechanical properties. Int Ophthalmol, 2021, 41(4): 1247-1259..
|
23. |
Zhou D, Abass A, Eliasy A, et al. Microstructure-based numerical simulation of the mechanical behaviour of ocular tissue. J R Soc Interface, 2019, 16(154): 20180685..
|
24. |
Zhang H, Eliasy A, Lopes B, et al. Stress-strain index map: a new way to represent corneal material stiffness. Front Bioeng Biotechnol, 2021, 9: 640434..
|
25. |
Lopes B T, Padmanabhan P, Eliasy A, et al. In vivo assessment of localised corneal biomechanical deterioration with keratoconus progression. Front Bioeng Biotechnol, 2022, 10: 812507..
|
26. |
Ruberti J W, Sinha Roy A, Roberts C J. Corneal biomechanics and biomaterials. Annu Rev Biomed Eng, 2011, 13(1): 269-295..
|
27. |
Dias J M, Ziebarth N M. Anterior and posterior corneal stroma elasticity assessed using nanoindentation. Exp Eye Res, 2013, 115: 41-46..
|
28. |
Spiru B, Kling S, Hafezi F, et al. Biomechanical properties of human cornea tested by two-dimensional extensiometry ex vivo in fellow eyes: femtosecond laser-assisted LASIK versus SMILE. J Refract Surg, 2018, 34(6): 419-423..
|
29. |
Kamiya K, Shimizu K, Ohmoto F. Comparison of the changes in corneal biomechanical properties after photorefractive keratectomy and laser in situ keratomileusis. Cornea, 2009, 28(7): 765-769..
|
30. |
Ortiz D, Piñero D, Shabayek M H, et al. Corneal biomechanical properties in normal, post-laser in situ keratomileusis, and keratoconic eyes. J Cataract Refract Surg, 2007, 33(8): 1371-1375..
|
31. |
Scarcelli G, Besner S, Pineda R, et al. Biomechanical characterization of keratoconus corneas ex vivo with Brillouin microscopy. Investig Ophthalmol Vis Sci, 2014, 55(7): 4490..
|
32. |
Besner S, Shao P, Scarcelli G, et al. Imaging of keratoconic and normal human cornea with a Brillouin imaging system// Ophthalmic Technologies XXVI. San Francisco: SPIE, 2016, 9693: 30..
|
33. |
Meek K M, Boote C. The use of X-ray scattering techniques to quantify the orientation and distribution of collagen in the corneal stroma. Prog Retin Eye Res, 2009, 28(5): 369-392..
|
34. |
Radner W, Zehetmayer M, Aufreiter R, et al. Interlacing and cross-angle distribution of collagen lamellae in the human cornea. Cornea, 1998, 17(5): 537-543..
|
35. |
Elsheikh A, Alhasso D. Mechanical anisotropy of porcine cornea and correlation with stromal microstructure. Exp Eye Res, 2009, 88(6): 1084-1091..
|
36. |
Arsalan Khan M, Elsheikh A, Ahmad Khan I. Biomechanical behaviour-anisotropy of eye cornea through experimental strip tests// IOP Conference Series: Materials Science and Engineering. Bengaluru: IOP, 2018, 310(1): 012075..
|
37. |
Xiang Y, Shen M, Xue C, et al. Tensile biomechanical properties and constitutive parameters of human corneal stroma extracted by SMILE procedure. J Mech Behav Biomed Mater, 2018, 85: 102-108..
|