Citation: DALincui, GONGMei, WANGMin, XIEHuiqi. RESEARCH PROGRESS OF NOVEL CROSS-LINKING METHODS APPLIED IN BIO-DERIVED MATERIALS. Chinese Journal of Reparative and Reconstructive Surgery, 2014, 28(6): 777-783. doi: 10.7507/1002-1892.20140172 Copy
1. | Fisher MB, Mauck RL. Tissue engineering and regenerative medicine:recent innovations and the transition to translation. Tissue Eng Part B Rev, 2013, 19(1):1-13. |
2. | O'Brien FJ. Biomaterials & scaffolds for tissue engineering. Materials Today, 2011, 14(3):88-95. |
3. | Tian L, George SC. Biomaterials to prevascularize engineered tissues. J Cardiovasc Transl Res, 2011, 4(5):685-698. |
4. | Zeugolis DI, Paul GR, Attenburrow G. Cross-linking of extruded collagen fibers-a biomimetic three-dimensional scaffold for tissue engineering applications. J Biomed Mater Res A, 2009, 89(4):895-908. |
5. | 李莉, 徐源廷, 陈健, 等. 氧化海藻酸钠交联改性脱细胞基质材料及其细胞相容性研究. 生物医学工程学杂志, 2011, 28(6):1154-1158. |
6. | He L, Mu C, Shi J, et al. Modification of collagen with a natural cross-linker, procyanidin. Int J Biol Macromol, 2011, 48(2):354-359. |
7. | Lü X, Zhai W, Zhou Y, et al. Crosslinking effect of Nordihydroguaiaretic acid (NDGA) on decellularized heart valve scaffold for tissue engineering. J Mater Sci Mater Med, 2010, 21(2):473-480. |
8. | Koch H, Graneist C, Emmrich F, et al. Xenogenic esophagus scaffolds fixed with several agents:comparative in vivo study of rejection and inflammation. J Biomed Biotechnol, 2012, 2012:948320. |
9. | Lü JM, Nurko J, Weakley SM, et al. Molecular mechanisms and clinical applications of nordihydroguaiaretic acid (NDGA) and its derivatives:an update. Med Sci Monit, 2010, 16(5):RA93-100. |
10. | Yang C, Xu L, Zhou Y, et al. A green fabrication approach of gelatin/CM-chitosan hybrid hydrogel for wound healing. Carbohydrate Polymers, 2010, 82(4):1297-1305. |
11. | Chan BP. Biomedical applications of photochemistry. Tissue Eng Part B Rev, 2010, 16(5):509-522. |
12. | Ramesh B, Mathapati S, Galla S, et al. Crosslinked acellular saphenous vein for small-diameter vascular graft. Asian Cardiovascular and Thoracic Annals, 2013, 21(3):293-302. |
13. | Lü WD, Zhang M, Wu ZS, et al. The performance of photooxidatively crosslinked acellular bovine jugular vein conduits in the reconstruction of connections between pulmonary arteries and right ventricles. Biomaterials, 2010, 31(10):2934-2943. |
14. | Hennink WE, van Nostrum CF. Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev, 2002, 54(1):13-36. |
15. | Huang X, Zhang Y, Zhang X, et al. Influence of radiation crosslinked carboxymethyl-chitosan/gelatin hydrogel on cutaneous wound healing. Mater Sci Eng C Mater Biol Appl, 2013, 33(8):4816-4824. |
16. | Nho YC, Park JS, Lim YM. Preparation of hydrogel by radiation for the healing of diabetic ulcer. Radiation Physics and Chemistry, 2014, (94):176-180. |
17. | Zhou Y, Xu L, Zhang X, et al. Radiation synthesis of gelatin/CM-chitosan/β-tricalcium phosphate composite scaffold for bone tissue engineering. Materials Science and Engineering:C, 2012, 32(4):994-1000. |
18. | Koob TJ, Hernandez DJ. Material properties of polymerized NDGA-collagen composite fibers:development of biologically based tendon constructs. Biomaterials, 2002, 23(1):203-212. |
19. | Koob TJ, Hernandez DJ. Mechanical and thermal properties of novel polymerized NDGA-gelatin hydrogels. Biomaterials, 2003, 24(7):1285-1292. |
20. | Yu M, Hwang J, Deming TJ. Role of L-3, 4-Dihydroxyphenylalanine in mussel adhesive proteins. J Am Chem Soc, 1999, 121(4):5825-5826. |
21. | Ju YM, Yu B, Koob TJ, et al. A novel porous collagen scaffold around an implantable biosensor for improving biocompatibility. I. In vitro/in vivo stability of the scaffold and in vitro sensitivity of the glucose sensor with scaffold. J Biomed Mater Res A, 2008, 87(1):136-146. |
22. | Ju YM, Yu B, West L, et al. A novel porous collagen scaffold around an implantable biosensor for improving biocompatibility. Ⅱ. Long-term in vitro/in vivo sensitivity characteristics of sensors with NDGA-or GA-crosslinked collagen scaffolds. J Biomed Mater Res A, 2010, 92(2):650-658. |
23. | Akao T, Kobashi K, Aburada M. Enzymic studies on the animal and intestinal bacterial metabolism of geniposide. Biol Pharm Bull, 1994, 17(12):1573-1576. |
24. | Djerassi C, Gray JD, Kincl FA. Naturally occurring oxygen heterocyclics. IX. isolation and characterization of genipin. J Org Chem, 1960, 25 (12):2174-2177. |
25. | Raiskup-Wolf F, Hoyer A, Spoerl E, et al. Collagen crosslinking with riboflavin and ultraviolet-A light in keratoconus:long-term results. J Cataract Refract Surg, 2008, 34(5):796-801. |
26. | Nickerson MT, Farnworth R, Wagar E, et al. Some physical and microstructural properties of genipin-crosslinked gelatin-maltodextrin hydrogels. Int J Biol Macromol, 2006, 38(1):40-44. |
27. | Nickerson MT, Patel J, Heyd DV, et al. Kinetic and mechanistic considerations in the gelation of genipin-crosslinked gelatin. Int J Biol Macromol, 2006, 39(4-5):298-302. |
28. | Butler MF, Ng YF, Pudney PD. Mechanism and kinetics of the crosslinking reaction between biopolymers containing primary amine groups and genipin. Journal of Polymer Science Part A:Polymer Chemistry, 2003, 41(24):3941-3953. |
29. | Silva SS, Motta A, Rodrigues MT, et al. Novel genipin-cross-linked chitosan/silk fibroin sponges for cartilage engineering strategies. Biomacromolecules, 2008, 9(10):2764-2774. |
30. | Yan LP, Wang YJ, Ren L, et al. Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications. J Biomed Mater Res A, 2010, 95(2):465-475. |
31. | Jin J, Song M, Hourston DJ. Novel chitosan-based films cross-linked by genipin with improved physical properties. Biomacromolecules, 2004, 5(1):162-168. |
32. | Chen YS, Chang JY, Cheng CY, et al. An in vivo evaluation of a biodegradable genipin-cross-linked gelatin peripheral nerve guide conduit material. Biomaterials, 2005, 26(18):3911-3918. |
33. | Muzzarelli RA. Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydrate Polymers, 2009, 77(1):1-9. |
34. | 王旻, 笪琳萃, 谢艳, 等. 京尼平作为交联剂在天然生物材料改性中的应用. 中国修复重建外科杂志, 2013, 27(5):558-563. |
35. | Sung HW, Chang Y, Liang IL, et al. Fixation of biological tissues with a naturally occurring crosslinking agent:fixation rate and effects of pH, temperature, and initial fixative concentration. J Biomed Mater Res, 2000, 52(1):77-87. |
36. | Xu Y, Li L, Yu X, et al. Feasibility study of a novel crosslinking reagent (alginate dialdehyde) for biological tissue fixation. Carbohydrate Polymers, 2012, 87(2):1589-1595. |
37. | 梁晔, 刘万顺, 韩宝芹, 等. 一种新型生物交联剂的制备及其性质. 中国海洋大学学报, 2008, 38(4):590-594. |
38. | Balakrishnan B, Jayakrishnan A. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Biomaterials, 2005, 26(18):3941-3951. |
39. | Draye JP, Delaey B, Van de Voorde A, et al. In vitro release characteristics of bioactive molecules from dextran dialdehyde cross-linked gelatin hydrogel films. Biomaterials, 1998, 19(1-3):99-107. |
40. | Draye JP, Delaey B, Van de Voorde A, et al. In vitro and in vivo biocompatibility of dextran dialdehyde cross-linked gelatin hydrogel films. Biomaterials, 1998, 19(18):1677-1687. |
41. | Mateo C, Palomo JM, van Langen LM, et al. A new, mild cross-linking methodology to prepare cross-linked enzyme aggregates. Biotechnol Bioeng, 2004, 86(3):273-276. |
42. | Konno K, Hirayama C, Yasui H, et al. Enzymatic activation of oleuropein:a protein crosslinker used as a chemical defense in the privet tree. Proc Natl Acad Sci U S A, 1999, 96(16):9159-9164. |
43. | Mitra T, Sailakshmi G, Gnanamani A, et al. Preparation and characterization of a thermostable and biodegradable biopolymers using natural cross-linker. Int J Biol Macromol, 2011, 48(2):276-285. |
44. | Lee H, Jeong C, Ghafoor K, et al. Oral delivery of insulin using chitosan capsules cross-linked with phytic acid. Biomed Mater Eng, 2011, 21(1):25-36. |
45. | 何淑兰. 可降解海藻酸盐水凝胶的研究. 天津:天津大学, 2005. |
46. | Nie H, Shen X, Zhou Z, et al. Electrospinning and characterization of konjac glucomannan/chitosan nanofibrous scaffolds favoring the growth of bone mesenchymal stem cells. Carbohydrate Polymers, 2011, 85(3):681-686. |
47. | Kuo CK, Ma PX. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering:part 1. Structure, gelation rate and mechanical properties. Biomaterials, 2001, 22(6):511-521. |
48. | Gillette BM, Jensen JA, Wang M, et al. Dynamic hydrogels:switching of 3D microenvironments using two-component naturally derived extracellular matrices. Adv Mater, 2010, 22(6):686-691. |
49. | Janes KA, Fresneau MP, Marazuela A, et al. Chitosan nanoparticles as delivery systems for doxorubicin. J Control Release, 2001, 73(2-3):255-267. |
50. | 叶菁芸. 物理交联壳聚糖水凝胶的构建及复合大分子液晶的研究. 广州:暨南大学, 2012. |
51. | Han B, Jaurequi J, Tang BW, et al. Proanthocyanidin:a natural crosslinking reagent for stabilizing collagen matrices. J Biomed Mater Res A, 2003, 65(1):118-124. |
52. | Nuthong P, Benjakul S, Prodpran T. Characterization of porcine plasma protein-based films as affected by pretreatment and cross-linking agents. Int J Biol Macromol, 2009, 44(2):143-148. |
53. | Zhai W, Lü X, Chang J, et al. Quercetin-crosslinked porcine heart valve matrix:mechanical properties, stability, anticalcification and cytocompatibility. Acta Biomater, 2010, 6(2):389-395. |
54. | Kretlow JD, Klouda L, Mikos AG. Injectable matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev, 2007, 59(4-5):263-273. |
55. | Collighan RJ, Griffin M. Transglutaminase 2 cross-linking of matrix proteins:biological significance and medical applications. Amino Acids, 2009, 36(4):659-670. |
56. | Jin R, Moreira Teixeira LS, Dijkstra PJ, et al. Enzymatically crosslinked dextran-tyramine hydrogels as injectable scaffolds for cartilage tissue engineering. Tissue Eng Part A, 2010, 16(8):2429-2440. |
57. | Jus S, Stachel I, Fairhead M, et al. Enzymatic cross-linking of gelatine with laccase and tyrosinase. Biocatalysis and Biotransformation, 2012, 30(1):86-95. |
58. | Taddei P, Chiono V, Anghileri A, et al. Silk fibroin/gelatin blend films crosslinked with enzymes for biomedical applications. Macromol Biosci, 2013, 13(11):1492-1510. |
59. | Egeblad M, Rasch MG, Weaver VM. Dynamic interplay between the collagen scaffold and tumor evolution. Curr Opin Cell Biol, 2010, 22(5):697-706. |
60. | Teixeira LS, Feijen J, van Blitterswijk CA, et al. Enzyme-catalyzed crosslinkable hydrogels:emerging strategies for tissue engineering. Biomaterials, 2012, 33(5):1281-1290. |
61. | Sperinde JJ, Griffith LG. Synthesis and characterization of enzymatically-cross-linked poly (ethylene glycol) hydrogels. Macromolecules, 1997, 30:5255-5264. |
62. | Stachel I, Schwarzenbolz U, Henle T, et al. Cross-linking of type I collagen with microbial transglutaminase:identification of cross-linking sites. Biomacromolecules, 2010, 11(3):698-705. |
63. | Verderio EA, Johnson T, Griffin M. Tissue transglutaminase in normal and abnormal wound healing:review article. Amino Acids, 2004, 26(4):387-404. |
64. | Westhaus E, Messersmith PB. Triggered release of calcium from lipid vesicles:a bioinspired strategy for rapid gelation of polysaccharide and protein hydrogels. Biomaterials, 2001, 22(5):453-462. |
65. | Chau DY, Collighan RJ, Verderio EA, et al. The cellular response to transglutaminase-cross-linked collagen. Biomaterials, 2005, 26(33):6518-6529. |
66. | Lee PF, Bai Y, Smith RL, et al. Angiogenic responses are enhanced in mechanically and microscopically characterized, microbial transglutaminase crosslinked collagen matrices with increased stiffness. Acta Biomater, 2013, 9(7):7178-7190. |
67. | Wen C, Lu L, Li X. Mechanically robust gelatin-alginate IPN hydrogels by a combination of enzymaticand ionic crosslinking approaches. Macromolecular Materials and Engineering, 2013, 299(4):504-513. |
- 1. Fisher MB, Mauck RL. Tissue engineering and regenerative medicine:recent innovations and the transition to translation. Tissue Eng Part B Rev, 2013, 19(1):1-13.
- 2. O'Brien FJ. Biomaterials & scaffolds for tissue engineering. Materials Today, 2011, 14(3):88-95.
- 3. Tian L, George SC. Biomaterials to prevascularize engineered tissues. J Cardiovasc Transl Res, 2011, 4(5):685-698.
- 4. Zeugolis DI, Paul GR, Attenburrow G. Cross-linking of extruded collagen fibers-a biomimetic three-dimensional scaffold for tissue engineering applications. J Biomed Mater Res A, 2009, 89(4):895-908.
- 5. 李莉, 徐源廷, 陈健, 等. 氧化海藻酸钠交联改性脱细胞基质材料及其细胞相容性研究. 生物医学工程学杂志, 2011, 28(6):1154-1158.
- 6. He L, Mu C, Shi J, et al. Modification of collagen with a natural cross-linker, procyanidin. Int J Biol Macromol, 2011, 48(2):354-359.
- 7. Lü X, Zhai W, Zhou Y, et al. Crosslinking effect of Nordihydroguaiaretic acid (NDGA) on decellularized heart valve scaffold for tissue engineering. J Mater Sci Mater Med, 2010, 21(2):473-480.
- 8. Koch H, Graneist C, Emmrich F, et al. Xenogenic esophagus scaffolds fixed with several agents:comparative in vivo study of rejection and inflammation. J Biomed Biotechnol, 2012, 2012:948320.
- 9. Lü JM, Nurko J, Weakley SM, et al. Molecular mechanisms and clinical applications of nordihydroguaiaretic acid (NDGA) and its derivatives:an update. Med Sci Monit, 2010, 16(5):RA93-100.
- 10. Yang C, Xu L, Zhou Y, et al. A green fabrication approach of gelatin/CM-chitosan hybrid hydrogel for wound healing. Carbohydrate Polymers, 2010, 82(4):1297-1305.
- 11. Chan BP. Biomedical applications of photochemistry. Tissue Eng Part B Rev, 2010, 16(5):509-522.
- 12. Ramesh B, Mathapati S, Galla S, et al. Crosslinked acellular saphenous vein for small-diameter vascular graft. Asian Cardiovascular and Thoracic Annals, 2013, 21(3):293-302.
- 13. Lü WD, Zhang M, Wu ZS, et al. The performance of photooxidatively crosslinked acellular bovine jugular vein conduits in the reconstruction of connections between pulmonary arteries and right ventricles. Biomaterials, 2010, 31(10):2934-2943.
- 14. Hennink WE, van Nostrum CF. Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev, 2002, 54(1):13-36.
- 15. Huang X, Zhang Y, Zhang X, et al. Influence of radiation crosslinked carboxymethyl-chitosan/gelatin hydrogel on cutaneous wound healing. Mater Sci Eng C Mater Biol Appl, 2013, 33(8):4816-4824.
- 16. Nho YC, Park JS, Lim YM. Preparation of hydrogel by radiation for the healing of diabetic ulcer. Radiation Physics and Chemistry, 2014, (94):176-180.
- 17. Zhou Y, Xu L, Zhang X, et al. Radiation synthesis of gelatin/CM-chitosan/β-tricalcium phosphate composite scaffold for bone tissue engineering. Materials Science and Engineering:C, 2012, 32(4):994-1000.
- 18. Koob TJ, Hernandez DJ. Material properties of polymerized NDGA-collagen composite fibers:development of biologically based tendon constructs. Biomaterials, 2002, 23(1):203-212.
- 19. Koob TJ, Hernandez DJ. Mechanical and thermal properties of novel polymerized NDGA-gelatin hydrogels. Biomaterials, 2003, 24(7):1285-1292.
- 20. Yu M, Hwang J, Deming TJ. Role of L-3, 4-Dihydroxyphenylalanine in mussel adhesive proteins. J Am Chem Soc, 1999, 121(4):5825-5826.
- 21. Ju YM, Yu B, Koob TJ, et al. A novel porous collagen scaffold around an implantable biosensor for improving biocompatibility. I. In vitro/in vivo stability of the scaffold and in vitro sensitivity of the glucose sensor with scaffold. J Biomed Mater Res A, 2008, 87(1):136-146.
- 22. Ju YM, Yu B, West L, et al. A novel porous collagen scaffold around an implantable biosensor for improving biocompatibility. Ⅱ. Long-term in vitro/in vivo sensitivity characteristics of sensors with NDGA-or GA-crosslinked collagen scaffolds. J Biomed Mater Res A, 2010, 92(2):650-658.
- 23. Akao T, Kobashi K, Aburada M. Enzymic studies on the animal and intestinal bacterial metabolism of geniposide. Biol Pharm Bull, 1994, 17(12):1573-1576.
- 24. Djerassi C, Gray JD, Kincl FA. Naturally occurring oxygen heterocyclics. IX. isolation and characterization of genipin. J Org Chem, 1960, 25 (12):2174-2177.
- 25. Raiskup-Wolf F, Hoyer A, Spoerl E, et al. Collagen crosslinking with riboflavin and ultraviolet-A light in keratoconus:long-term results. J Cataract Refract Surg, 2008, 34(5):796-801.
- 26. Nickerson MT, Farnworth R, Wagar E, et al. Some physical and microstructural properties of genipin-crosslinked gelatin-maltodextrin hydrogels. Int J Biol Macromol, 2006, 38(1):40-44.
- 27. Nickerson MT, Patel J, Heyd DV, et al. Kinetic and mechanistic considerations in the gelation of genipin-crosslinked gelatin. Int J Biol Macromol, 2006, 39(4-5):298-302.
- 28. Butler MF, Ng YF, Pudney PD. Mechanism and kinetics of the crosslinking reaction between biopolymers containing primary amine groups and genipin. Journal of Polymer Science Part A:Polymer Chemistry, 2003, 41(24):3941-3953.
- 29. Silva SS, Motta A, Rodrigues MT, et al. Novel genipin-cross-linked chitosan/silk fibroin sponges for cartilage engineering strategies. Biomacromolecules, 2008, 9(10):2764-2774.
- 30. Yan LP, Wang YJ, Ren L, et al. Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications. J Biomed Mater Res A, 2010, 95(2):465-475.
- 31. Jin J, Song M, Hourston DJ. Novel chitosan-based films cross-linked by genipin with improved physical properties. Biomacromolecules, 2004, 5(1):162-168.
- 32. Chen YS, Chang JY, Cheng CY, et al. An in vivo evaluation of a biodegradable genipin-cross-linked gelatin peripheral nerve guide conduit material. Biomaterials, 2005, 26(18):3911-3918.
- 33. Muzzarelli RA. Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydrate Polymers, 2009, 77(1):1-9.
- 34. 王旻, 笪琳萃, 谢艳, 等. 京尼平作为交联剂在天然生物材料改性中的应用. 中国修复重建外科杂志, 2013, 27(5):558-563.
- 35. Sung HW, Chang Y, Liang IL, et al. Fixation of biological tissues with a naturally occurring crosslinking agent:fixation rate and effects of pH, temperature, and initial fixative concentration. J Biomed Mater Res, 2000, 52(1):77-87.
- 36. Xu Y, Li L, Yu X, et al. Feasibility study of a novel crosslinking reagent (alginate dialdehyde) for biological tissue fixation. Carbohydrate Polymers, 2012, 87(2):1589-1595.
- 37. 梁晔, 刘万顺, 韩宝芹, 等. 一种新型生物交联剂的制备及其性质. 中国海洋大学学报, 2008, 38(4):590-594.
- 38. Balakrishnan B, Jayakrishnan A. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Biomaterials, 2005, 26(18):3941-3951.
- 39. Draye JP, Delaey B, Van de Voorde A, et al. In vitro release characteristics of bioactive molecules from dextran dialdehyde cross-linked gelatin hydrogel films. Biomaterials, 1998, 19(1-3):99-107.
- 40. Draye JP, Delaey B, Van de Voorde A, et al. In vitro and in vivo biocompatibility of dextran dialdehyde cross-linked gelatin hydrogel films. Biomaterials, 1998, 19(18):1677-1687.
- 41. Mateo C, Palomo JM, van Langen LM, et al. A new, mild cross-linking methodology to prepare cross-linked enzyme aggregates. Biotechnol Bioeng, 2004, 86(3):273-276.
- 42. Konno K, Hirayama C, Yasui H, et al. Enzymatic activation of oleuropein:a protein crosslinker used as a chemical defense in the privet tree. Proc Natl Acad Sci U S A, 1999, 96(16):9159-9164.
- 43. Mitra T, Sailakshmi G, Gnanamani A, et al. Preparation and characterization of a thermostable and biodegradable biopolymers using natural cross-linker. Int J Biol Macromol, 2011, 48(2):276-285.
- 44. Lee H, Jeong C, Ghafoor K, et al. Oral delivery of insulin using chitosan capsules cross-linked with phytic acid. Biomed Mater Eng, 2011, 21(1):25-36.
- 45. 何淑兰. 可降解海藻酸盐水凝胶的研究. 天津:天津大学, 2005.
- 46. Nie H, Shen X, Zhou Z, et al. Electrospinning and characterization of konjac glucomannan/chitosan nanofibrous scaffolds favoring the growth of bone mesenchymal stem cells. Carbohydrate Polymers, 2011, 85(3):681-686.
- 47. Kuo CK, Ma PX. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering:part 1. Structure, gelation rate and mechanical properties. Biomaterials, 2001, 22(6):511-521.
- 48. Gillette BM, Jensen JA, Wang M, et al. Dynamic hydrogels:switching of 3D microenvironments using two-component naturally derived extracellular matrices. Adv Mater, 2010, 22(6):686-691.
- 49. Janes KA, Fresneau MP, Marazuela A, et al. Chitosan nanoparticles as delivery systems for doxorubicin. J Control Release, 2001, 73(2-3):255-267.
- 50. 叶菁芸. 物理交联壳聚糖水凝胶的构建及复合大分子液晶的研究. 广州:暨南大学, 2012.
- 51. Han B, Jaurequi J, Tang BW, et al. Proanthocyanidin:a natural crosslinking reagent for stabilizing collagen matrices. J Biomed Mater Res A, 2003, 65(1):118-124.
- 52. Nuthong P, Benjakul S, Prodpran T. Characterization of porcine plasma protein-based films as affected by pretreatment and cross-linking agents. Int J Biol Macromol, 2009, 44(2):143-148.
- 53. Zhai W, Lü X, Chang J, et al. Quercetin-crosslinked porcine heart valve matrix:mechanical properties, stability, anticalcification and cytocompatibility. Acta Biomater, 2010, 6(2):389-395.
- 54. Kretlow JD, Klouda L, Mikos AG. Injectable matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev, 2007, 59(4-5):263-273.
- 55. Collighan RJ, Griffin M. Transglutaminase 2 cross-linking of matrix proteins:biological significance and medical applications. Amino Acids, 2009, 36(4):659-670.
- 56. Jin R, Moreira Teixeira LS, Dijkstra PJ, et al. Enzymatically crosslinked dextran-tyramine hydrogels as injectable scaffolds for cartilage tissue engineering. Tissue Eng Part A, 2010, 16(8):2429-2440.
- 57. Jus S, Stachel I, Fairhead M, et al. Enzymatic cross-linking of gelatine with laccase and tyrosinase. Biocatalysis and Biotransformation, 2012, 30(1):86-95.
- 58. Taddei P, Chiono V, Anghileri A, et al. Silk fibroin/gelatin blend films crosslinked with enzymes for biomedical applications. Macromol Biosci, 2013, 13(11):1492-1510.
- 59. Egeblad M, Rasch MG, Weaver VM. Dynamic interplay between the collagen scaffold and tumor evolution. Curr Opin Cell Biol, 2010, 22(5):697-706.
- 60. Teixeira LS, Feijen J, van Blitterswijk CA, et al. Enzyme-catalyzed crosslinkable hydrogels:emerging strategies for tissue engineering. Biomaterials, 2012, 33(5):1281-1290.
- 61. Sperinde JJ, Griffith LG. Synthesis and characterization of enzymatically-cross-linked poly (ethylene glycol) hydrogels. Macromolecules, 1997, 30:5255-5264.
- 62. Stachel I, Schwarzenbolz U, Henle T, et al. Cross-linking of type I collagen with microbial transglutaminase:identification of cross-linking sites. Biomacromolecules, 2010, 11(3):698-705.
- 63. Verderio EA, Johnson T, Griffin M. Tissue transglutaminase in normal and abnormal wound healing:review article. Amino Acids, 2004, 26(4):387-404.
- 64. Westhaus E, Messersmith PB. Triggered release of calcium from lipid vesicles:a bioinspired strategy for rapid gelation of polysaccharide and protein hydrogels. Biomaterials, 2001, 22(5):453-462.
- 65. Chau DY, Collighan RJ, Verderio EA, et al. The cellular response to transglutaminase-cross-linked collagen. Biomaterials, 2005, 26(33):6518-6529.
- 66. Lee PF, Bai Y, Smith RL, et al. Angiogenic responses are enhanced in mechanically and microscopically characterized, microbial transglutaminase crosslinked collagen matrices with increased stiffness. Acta Biomater, 2013, 9(7):7178-7190.
- 67. Wen C, Lu L, Li X. Mechanically robust gelatin-alginate IPN hydrogels by a combination of enzymaticand ionic crosslinking approaches. Macromolecular Materials and Engineering, 2013, 299(4):504-513.