1. |
[No author listed]. Advancing tissue science and engineering:a foundation for the future. A multi-agency strategic plan. Tissue Eng, 2007, 13(12):2825-2826.
|
2. |
Gunatillake P, Mayadunne R, Adhikari R. Recent development in biodegradable synthetic polymers. Biotech Ann Rev, 2006, 12:301-347.
|
3. |
Ma PX. Scaffolds for tissue fabrication. Materials Today, 2004, 7(5):30-40.
|
4. |
Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci, 2007, 32(8-9):762-798.
|
5. |
Radisic M, Park H, Shing H, et al. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci U S A, 2004, 101(52):18129-18134.
|
6. |
Marston WA, Hanft J, Norwood P, et al. The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers:results of a prospective randomized trial. Diabetes Care, 2003, 26(6):1701-1705.
|
7. |
Nie X, Zhang JY, Cai KJ, et al. Cosmetic improvement in various acute skin defects treated with tissue engineered skin. Artificial Organs, 2007, 31(9):703-710.
|
8. |
Liu Y, Suwa F, Wang X, et al. Reconstruction of a tissue-engineered skin containing melanocytes. Cell Biol Int, 2007, 31(9):985-990.
|
9. |
Nie X, Cai JK, Yang HM, et al. Successful application of tissue-engineered skin to refractory ulcers. Clin Exp Dermatology, 2007, 32(6):699-701.
|
10. |
Liu P, Deng Z, Han S, et al. Tissue-engineered skin containing mesenchymal stem cells improves burn wounds. Artificial Organs, 2008, 32(12):925-931.
|
11. |
Anders S, Volz M, Frick H, et al. A randomized, controlled trial comparing autologous matrix-induced chondrogenesis (AMIC®) to microfracture:Analysis of 1-and 2-year follow-up data of 2 centers. Open Orthop J, 2013, 7:133-143.
|
12. |
Gerlier L, Lamotte M, Wille M, et al. The cost utility of autologous chondrocytes implantation using ChondroCelect® in sympotomatic knee cartilage lesions in Belgium. Pharmacoeconomics, 2010, 28(12):1129-1146.
|
13. |
Crawford DC, Deberardino TM, Williams RJ 3rd. NeoCart, an autologous cartilage tissue implant, compared with microfracture for treatment of distal femoral cartilage lesions:an FDA phase-Ⅱ prospective, randomized clinical trial after two years. J Bone Joint Surg (Am), 2012, 94(11):979-989.
|
14. |
Petri M, Broese M, Simon A, et al. CaReS® (MACT) versus microfracture in treating symptomatic patellofemoral cartilage defects:a retrospective matched-pair analysis. J Orthop Sci, 2013, 18(1):38-44.
|
15. |
Schüettler KF, Struewer J, Rominer MB, et al. Repair of a chondral defect using a cell free scaffold in a young patient-a case report of successful scaffold transformation and colonization. BMC Surgery, 2013, 13:11-17.
|
16. |
Zhai Y, Cui FZ. Recombinant human-like collagen directed growth of hydroxyapatite nanocrystals. Journal of Crystal Growth, 2006, 291 (1):202-206.
|
17. |
Zhai Y, Cui FZ, Wang Y. Formation of nano-hydroxyapatite on recombinant human-like collagen fibrils. Current Applied Physics, 2005, 5(5):429-432.
|
18. |
Wang Y, Cui FZ, Zhai Y, et al. Investigations of the initial stage of recombinant human-like collagen mineralization. Materials Science and Engineering:C, 2006, 26 (4):635-638.
|
19. |
伍津津. 复合人工皮肤的制备方法:中国, CN01107099. 4. 2001-08-29.
|
20. |
Ding F, Wu J, Yang Y, et al. Use of tissue-engineered nerve grafts consisting of a chitosan/poly (lactic-co-glycolic acid)-based scaffold included with bone marrow mesenchymal cells for bridging 50-mm dog sciatic nerve gaps. Tissue Eng Part A, 2010, 16(12):3779-3790.
|
21. |
张皑峰, 欧喜超, 杨朝阳, 等. 应用结合bFGF的壳聚糖导管修复大鼠坐骨神经损伤的实验研究. 中国康复理论与实践, 2008, 14(12):1133-1135.
|
22. |
Landa N, Miller L, Feinberg MS, et al. Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat. Circulation, 2008, 117(11):1388-1396.
|
23. |
Leor J, Tuvia S, Guetta V, et al. Intracornary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in Swine. J Am Coll Cardiol, 2009, 54(11):1014-1023.
|
24. |
Song JJ, Ott HC. Organ engineering based on decellularized matrix scaffold. Trends Mol Med, 2011, 17(8):424-432.
|
25. |
Macchinarini P, Jungebluth P, Go T, et al. Clinical transplantation of a tissue-engineered airway. Lancet, 2008, 372(9655):2023-2030.
|
26. |
Hu J, Zhu QT, Liu XL, et al. Repair of extended peripheral nerve lesions in rhesus monkeys using acellular allogenic nerve grafts implanted with autologous mesenchymal stem cells. Exp Neurol, 2007, 204(2):658-666.
|
27. |
Wang D, Liu XL, Zhu JK, et al. Bridging small-gap peripheral nerve defects using acellular nerve allograft implanted with autologous bone marrow stromal cells in primates. Brain Res, 2008, 1188:44-53.
|
28. |
Ott HC, Matthiesen TS, Goh SK, et al. Perfusion-decelluarized matrix:using nature's platform to engineer a bioartifical heart. Nat Med, 2008, 14(2):213-221.
|
29. |
Uygun BE, Soto-Gutierrez A, Yagi H, et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med, 2010, 16(7):814-820.
|
30. |
Schanz J, Pusch J, Hansmann J, et al. Vascularized human tissue models:a new approach for the refinement of biomedical research. J Biotechnol, 2010, 148(1):56-63.
|
31. |
Song JJ, Kim SS, Liu Z, et al. Enhanced in vivo function of bioartificial lungs in rats. Ann Throac Surg, 2011, 92(3):998-1005.
|
32. |
Petersen TH, Calle EA, Zhao L, et al. Tissue-engineered lungs for in vivo implantation. Science, 2010, 329(5991):538-541.
|
33. |
Yang B, Zhang Y, Zhou L, et al. Development of a porcine bladder acellular matrix with well-preserved extracellular bioactive factors for tissue engineering. Tissue Eng Part C Meyhod, 2010, 16(5):1201-1211.
|
34. |
Nakayama KH, Barchelder CA, Lee CI, et al. Decellularized rhesus monkey kidney as a three-dimensional scaffolds for renal tissue engineering. Tissue Eng Part A, 2010, 16(7):2207-2216.
|
35. |
Nishida K, Yamato M, Hayashida Y, et al. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med, 2004, 351(12):1187-1196.
|
36. |
Shimizu T, Yamato M, Isoi Y, et al. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ Res, 2002, 90(3):e40.
|
37. |
Miyahara Y, Nagaya N, Kataoka M, et al. Monolayered mesenchymal stem cells repair scared myocardium after myocardial infarction. Nat Med, 2006, 12(4):459-465.
|
38. |
Shimizu T, Yamato M, Kikuchi A, et al. Cell sheet engineering for myocardial tissue reconstruction. Biomaterials, 2003, 24(13):2309-2316.
|
39. |
Memon IA, Sawa Y, Fukushima N, et al. Repair of impaired myocardium by means of implantation of engineered autologous myoblast sheets. J Tharac Cardiovasc Surg, 2005, 130(5):1333-1341.
|
40. |
Ohki T, Yamato M, Murakami D, et al. Treatment of oesophageal ulcerations using endoscopic transplantation of tissue-engineered autologous oral mucosal epithelial cell sheets in a canine model. Gut, 2006, 55(12):1704-1710.
|
41. |
Akizuki T, Oda S, Komaki M, et al. Application of periodontal ligament cell sheet for periodontal regeneration:a pilot study in beagle dogs. J Periodontal Res, 2005, 40(3):245-251.
|
42. |
Shimizu H, Ohashi K, Utoh R, et al. Bioengineering of a functional sheet of islet cells for the treatment of diabetes mellitus. Biomaterials, 2009, 30(30):5943-5949.
|
43. |
Pirraco RP, Obokata H, Iwata T, et al. Development of osteogenic cell sheets for bone tissue engineering applications. Tissue Eng Part A, 2011, 17(11-12):1507-1515.
|
44. |
Muraoka M, Shimizu T, Itoga K, et al. Control of the formation of vascular networks in 3D tissue engineered constructs. Biomaterials, 2013, 34(3):696-703.
|
45. |
Nagamori E, Ngo TX, Takezawa Y, et al. Network formation through active migration of human vascular endothelial cells in a multilayered skeletal myoblast sheet. Biomaterials, 2013, 34(3):662-668.
|