1. |
Kränkel N, Spinetti G, Amadesi S, et al. Targeting stem cell niches and trafficking for cardiovascular therapy. Pharmacol Ther, 2011, 129(1):62-81.
|
2. |
Liang SX, Tan TY, Gaudry L, et al. Differentiation and migration of Sca1/CD31-cardiac side population cells in a mouse infarction model. Int J Cardiol, 2010, 138(1):40-49.
|
3. |
Bollini S, Smart N, Riley PR. Resident cardiac progenitor cells:at the heart of regeneration. J Mol Cell Cardiol, 2011, 50(2):296-303.
|
4. |
Urbanek K, Cesselli D, Rota M, et al. Stem cell niches in the adult mouse heart. Proc Natl Acad Sci U S A, 2006, 103(24):9226-9231.
|
5. |
Murtuza B, Nichol JW, Khademhosseini A. Micro- and nanoscale control of the cardiac stem cell niche for tissue fabrication. Tissue Eng Part B Rev, 2009, 15(4):443-453.
|
6. |
Badylak SF, Freytes DO, Gilbert TW. Extracellular matrix as a biological scaffold material:structure and function. Acta Biomater, 2009, 5(1):1-13.
|
7. |
Hynes RO, Naba A. Overview of the matrisome-an inventory of extracellular matrix constituents and functions. Cold Spring Harb Perspect Biol, 2012, 4(1):a004903.
|
8. |
Moore L, Fan D, Basu R, et al. Tissue inhibitor of metalloproteinases (TIMPs) in heart failure. Heart Fail Rev, 2012, 17(4-5):693-706.
|
9. |
Porter KE, Turner NA. Cardiac fibroblasts:at the heart of myocardial remodeling. Pharmacol Ther, 2009, 123(2):255-278.
|
10. |
French KM, Boopathy AV, DeQuach JA, et al. A naturally derived cardiac extracellular matrix enhances cardiac progenitor cell behavior in vitro. Acta Biomater, 2012, 8(12):4357-4364.
|
11. |
Barallobre-Barreiro J, Didangelos A, Schoendube FA, et al. Proteomics analysis of cardiac extracellular matrix remodeling in a porcine model of ischemia/reperfusion injury. Circulation, 2012, 125(6):789-802.
|
12. |
Castaldo C, Di Meglio F, Miraglia R, et al. Cardiac fibroblast-derived extracellular matrix (biomatrix) as a model for the studies of cardiac primitive cell biological properties in normal and pathological adult human heart. Biomed Res Int, 2013:352370.
|
13. |
Zhang J, Klos M, Wilson GF, et al. Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells:the matrix sandwich method. Circ Res, 2012, 111(9):1125-1136.
|
14. |
Teodori L, Costa A, Marzio R, et al. Native extracellular matrix:a new scaffolding platform for repair of damaged muscle. Front Physiol, 2014, 5:218.
|
15. |
Popescu LM, Gherghiceanu M, Manole CG, et al. Interstitial Cajal-like cells nurse cardiomyocyte progenitors in epicardial stem cell niches. J Cell Mol Med, 2009, 13(5):866-886.
|
16. |
Johnson AN, Mokalled MH, Haden TN, et al. JAK/Stat signaling regulates heart precursor diversification in Drosophila. Development, 2011, 138(21):4627-4638.
|
17. |
Mohri T, Iwakura T, Nakayama H, et al. JAK-STAT signaling in cardiomyogenesis of cardiac stem cells. JAKSTAT, 2012, 1(2):125-130.
|
18. |
Hoebaus J, Heher P, Gottschamel T, et al. Embryonic stem cells facilitate the isolation of persistent clonal cardiovascular progenitor cell lines and leukemia inhibitor factor maintains their self-renewal and myocardial differentiation potential in vitro. Cells Tissues Organs, 2013, 197(4):249-268.
|
19. |
Grigoryan T, Wend P, Klaus A, et al. Deciphering the function of canonical Wnt signals in development and disease:conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev, 2008, 22(17):2308-2341.
|
20. |
Liu J, Wang Y, Du W, et al. Wnt1 inhibits hydrogen peroxide-induced apoptosis in mouse cardiac stem cells. PLoS One, 2013, 8(3):e58883.
|
21. |
Kwon C, Cheng P, King IN, et al. Notch post-translationally regulates β-catenin protein in stem and progenitor cells. Nat Cell Biol, 2011, 13(10):1244-1251.
|
22. |
Noack C, Zafiriou MP, Schaeffer HJ, et al. Krueppel-like factor 15 regulates Wnt/β-catenin transcription and controls cardiac progenitor cell fate in the postnatal heart. EMBO Mol Med, 2012, 4(9):992-1007.
|
23. |
彭敏恋, 戴爱国, 蒋永亮, 等. 内皮间质转化的信号机制. 现代生物医学进展, 2013, 13(12):2382-2385.
|
24. |
Mauri F, Reichardt I, Mummery-Widmer JL, et al. The conserved siscs-large binding partner Banderuola regulates asymmetric cell division in Drosophila. Curr Biol, 2014, 24(16):1811-1825.
|
25. |
Song Y, Lu B. Interaction of Notch signaling modulator Numb with α-Adaptin regulates endocytosis of Notch pathway components and cell fate determination of neural stem cells. J Biol Chem, 2012, 287(21):17716-17728.
|
26. |
Cottage CT, Bailey B, Fischer KM, et al. Cardiac progenitor cell cycling stimulated by pim-1 kinase. Circ Res, 2010, 106(5):891-901.
|
27. |
Ferreira-Martins J, Ogórek B, Cappetta D, et al. Cardiomyogenesis in the developing heart is regulated by c-kit-positive cardiac stem cells. Circ Res, 2012, 110(5):701-715.
|
28. |
Mohyeldin A, Garzón-Muvdi T, Quiñones-Hinojosa A. Oxygen in stem cell biology:a critical component of the stem cell niche. Cell Stem Cell, 2010, 7(2):150-161.
|
29. |
Rota M, Hosoda T, De Angelis A. et al. The young mouse heart is composed of myocytes heterogeneous in age and function. Circ Res, 2007, 101(4):387-399.
|
30. |
Kocabas F, Mahmoud AI, Sosic D, et al. The hypoxic epicardial and subepicardial microenvironment. J Cardiovasc Transl Res, 2012, 5(5):654-665.
|
31. |
Sanada F, Kim J, Czarna A, et al. c-Kit-positive cardiac stem cells nested in hypoxic niches are activated by stem cell factor reversing the aging myopathy. Circ Res, 2014, 114(1):41-55.
|
32. |
Li TS, Marbán E. Physiological levels of reactive oxygen species are required to maintain genomic stability in stem cells. Stem Cells, 2010, 28(7):1178-1185.
|
33. |
Kocabas F, Mahmoud AI, Sosic D, et al. The hypoxic epicardial and subepicardial microenvironment. J Cardiovasc Transl Res, 2012, 5(5):654-665.
|
34. |
Matsuda T, Miyagawa S, Fukushima S, et al. Human cardiac stem cells with reduced notch signaling show enhanced therapeutic potential in a rat acute infarction model. Circ J, 2014, 78(1):222-231.
|