1. |
Ozawa T, Mickle DA,Weisel RD, et al. Histologic changes of nonbiodegradable and biodegradable biomaterials used to repair right ventricular heart defects in rats. J Thorac Cardiovasc Surg, 2002, 124(6): 1157-1164.
|
2. |
Zhang M, Methot D, Poppa V, et al. Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J Mol Cell Cardiol, 2001, 33(5): 907-921.
|
3. |
Williams C, Xie AW, Yamato M, et al. Stacking of aligned cell sheets for layer-by-layer control of complex tissue structure. Biomaterials, 2011, 32(24): 5625-5632.
|
4. |
Kreutziger KL, Muskheli V, Johnson P, et al. Developing vasculature and stroma in engineered human myocardium. Tissue Eng Part A, 2011, 17(9-10): 1219-1228.
|
5. |
康凯, 曲辉, 汤继权, 等. 共价结合生长因子的胶原补片改善大鼠室壁瘤修补术后移植细胞生存率的实验研究. 中国胸心血管外科临床杂志, 2013, 20(40): 451-456.
|
6. |
康凯, 啜俊波, 孙露, 等. 生长因子修饰的胶原补片对大鼠心室成形术后左心室构型的影响. 中华胸心血管外科杂志, 2015, 31(2): 98-101.
|
7. |
Hirt MN, Hansen A, Eschenhagen T. Cardiac tissue engineering: state of the art. Cir Res, 2014, 114(2): 354-367.
|
8. |
Malliaras K, Marban E. Cardiac cell therapy: where we've been, where we are, and where we should be headed. Br Med Bull, 2011, 98: 161-185.
|
9. |
Godier-Furnémont AF, Martens TP, Koeckert MS, et al. Composite scaffold provides a cell delivery platform for cardiovascular repair. Proc Natl Acad Sci, 2011, 108(19): 7974-7979.
|
10. |
Yang S, Pilgaard L, Chase LG, et al. Defined xenogeneic-free and hypoxic environment provides superior conditions for long-term expansion of human adipose-derived stem cells. Tissue Eng Part C Methods, 2012, 18(8): 593-602.
|
11. |
Rosova I, Dao M, Capoccia B, et al. Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells, 2008, 26(8): 2173-2182.
|
12. |
Li W, Ma N, Ong LL, et al. Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells, 2007, 25(8): 2118-2127.
|
13. |
Li JH, Zhang N, Wang JA. Improved anti-apoptotic and anti-remodeling potency of bone marrow mesenchymal stem cells by anoxic pre-conditioning in diabetic cardiomyopathy. J Endocrinol Invest, 2008, 31(2): 103-110.
|
14. |
Roy S, Khanna S, Wallace WA, et al. Characterization of perceived hyperoxia in isolated primary cardiac fibroblasts and in the reoxy-genated heart. J Biological Chemistry, 2003, 278(47): 47129-47135.
|
15. |
Walters J, Pop C, Scott FL, et al. A constitutively active and uninhi-bitable caspase-3 zymogen efficiently induces apoptosis. Biochem J, 2009, 424(3): 335-345.
|
16. |
Perry DK, Smyth MJ, Stennicke HR, et al. Zinc is a potent inhibitor of the apoptotic protease, caspase-3. A novel target for zinc in the inhibition of apoptosis. J Biol Chem, 1997, 272(30): 18530-18534.
|
17. |
Antoniou ES, Sund S, Homsi EN, et al. A theoretical simulation of hematopoietic stem cells during oxygen fluctuations: prediction of bone marrow responses during hemorrhagic shock. Shock, 2004, 22(5): 415-422.
|
18. |
Chow DC, Wenning LA, Miller WM, et al. Modeling pO(2) distributions in the bone marrow hematopoietic compartment. II. Modified Kroghian models. Biophys J, 2001, 81(2): 685-696.
|
19. |
Estrada JC, Albo C, Benguria A, et al. Culture of human mesenchymal stem cells at low oxygen tension improves growth and genetic stability by activating glycolysis. Cell Death Diff, 2012, 19(5): 743-755.
|
20. |
Fehrer C, Brunauer R, Laschoberetal G. Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan. Aging Cell, 2007, 6(6): 745-757.
|