1. |
Gaynor JW. Periventricular leukomalacia following neonatal and infant cardiac surgery. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu, 2004, 7: 133-140.
|
2. |
Kussman BD, Wypij D, Laussen PC, et al. Relationship of intraoperative cerebral oxygen saturation to neurodevelopmental outcome and brain magnetic resonance imaging at 1 year of age in infants undergoing biventricular repair. Circulation, 2010, 122(3): 245-254.
|
3. |
Jerrell JM, Shuler CO, Tripathi A. Long-term neurodevelopmental outcomes in children and adolescents with congenital heart disease. Prim Care Companion CNS Disord, 2015, 17(5). doi: 10.4088/PCC.15m01842. .
|
4. |
Korotcova L, Kumar S, Agematsu K, et al. Prolonged white matter inflammation after cardiopulmonary bypass and circulatory arrest in a juvenile porcine model. Ann Thorac Surg, 2015, 100(3): 1030-1037.
|
5. |
Pastuszko P, Schears GJ, Greeley WJ, et al. Granulocyte colony stimulating factor reduces brain injury in a cardiopulmonary bypass-circulatory arrest model of ischemia in a newborn piglet. Neurochem Res, 2014, 39(11): 2085-2092.
|
6. |
Ishibashi N, Scafidi J, Murata A, et al. White matter protection in congenital heart surgery. Circulation, 2012, 125(7): 859-871.
|
7. |
Agematsu K, Korotcova L, Morton PD, et al. Hypoxia diminishes the protective function of white-matter astrocytes in the developing brain. J Thorac Cardiovasc Surg, 2016, 151(1): 265-272.
|
8. |
Agematsu K, Korotcova L, Scafidi J, et al. Effects of preoperative hypoxia on white matter injury associated with cardiopulmonary bypass in a rodent hypoxic and brain slice model. Pediatr Res, 2014, 75(5): 618-625.
|
9. |
Murata A, Agematsu K, Korotcova L, et al., Rodent brain slice model for the study of white matter injury. J Thorac Cardiovasc Surg, 2013, 146(6): 1526-1533.e1.
|
10. |
Allard J, Paci P, Vander Elst L, et al. Regional and time-dependent neuroprotective effect of hypothermia following oxygen-glucose deprivation. Hippocampus, 2015, 25(2): 197-207.
|
11. |
Ziemka-Nałęcz M, Stanaszek L, Zalewska T. Oxygen-glucose deprivation promotes gliogenesis and microglia activation in organotypic hippocampal slice culture: involvement of metalloproteinases. Acta Neurobiol Exp (Wars), 2013, 73(1): 130-142.
|
12. |
Huang Y, Williams JC, Johnson SM. Brain slice on a chip: opportunities and challenges of applying microfluidic technology to intact tissues. Lab Chip, 2012, 12(12): 2103-2117.
|
13. |
Queval A, Ghattamaneni NR, Perrault CM, et al. Chamber and microfluidic probe for microperfusion of organotypic brain slices. Lab Chip, 2010, 10(3): 326-334.
|
14. |
Hájos N, Mody I. Establishing a physiological environment for visualized in vitro brain slice recordings by increasing oxygen supply and modifying aCSF content. J Neurosci Methods, 2009, 183(2): 107-113.
|
15. |
Ishibashi N, Iwata Y, Okamura T, et al., Differential neuronal vulnerability varies according to specific cardiopulmonary bypass insult in a porcine survival model. J Thorac Cardiovasc Surg, 2010, 140(6): 1408-1415.
|
16. |
Anttila V, Hagino I, Zurakowski D, et al. Higher bypass temperature correlates with increased white cell activation in the cerebral microcirculation. J Thorac Cardiovasc Surg, 2004, 127(6): 1781-1788.
|
17. |
Back SA, Luo NL, Borenstein NS, et al. Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci, 2001, 21(4): 1302-1312.
|
18. |
Volpe JJ, Kinney HC, Jensen FE, et al., The developing oligodendrocyte: key cellular target in brain injury in the premature infant. Int J Dev Neurosci, 2011, 29(4): 423-440.
|
19. |
Billiards SS, Haynes RL, Folkerth RD, et al. Myelin abnormalities without oligodendrocyte loss in periventricular leukomalacia. Brain Pathol, 2008, 18(2): 153-163.
|
20. |
Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol, 2009, 8(1): 110-124.
|