1. |
Nkomo VT, Gardin JM, Skelton TN, et al. Burden of valvular heart diseases: a population-based study. Lancet, 2006, 368(9540): 1005-1011.
|
2. |
Remenyi B, ElGuindy A, Smith SC Jr, et al. Valvular aspects of rheumatic heart disease. Lancet, 2016, 387(10025): 1335-1346.
|
3. |
Nishimura RA, Vahanian A, Eleid MF, et al. Mitral valve disease--current management and future challenges. Lancet, 2016, 387(10025): 1324-1334.
|
4. |
Pomerance A. Ageing changes in human heart valves. Br Heart J, 1967, 29(2): 222-231.
|
5. |
Farooqi KM, Sengupta PP. Echocardiography and three-dimensional printing: sound ideas to touch a heart. J Am Soc Echocardiogr, 2015, 28(4): 398-403.
|
6. |
Mitsouras D, Liacouras P, Imanzadeh A, et al. Medical 3D Printing for the Radiologist. Radiographics, 2015, 35(7): 1965-1988.
|
7. |
Izzo RL, O’Hara RP, Iyer V, et al. 3D printed cardiac phantom for procedural planning of a transcatheter native mitral valve replacement. Proc SPIE Int Soc Opt Eng, 2016, 9789: pii: 978908.
|
8. |
Little SH, Vukicevic M, Avenatti E, et al. 3D printed modeling for patient-specific mitral valve intervention: repair with a clip and a plug. JACC Cardiovasc Interv, 2016, 9(9): 973-975.
|
9. |
Yamada T, Osako M, Uchimuro T, et al. Three-dimensional printing of life-like models for simulation and training of minimally invasive cardiac surgery. Innovations (Phila), 2017, 12(6): 459-465.
|
10. |
Vukicevic M, Puperi DS, Grande-Allen KJ, et al. Erratum to: 3D printed modeling of the mitral valve for catheter-based structural interventions. Ann Biomed Eng, 2016, 44(11): 3432.
|
11. |
Sardari Nia P, Heuts S, Daemen J, et al. Preoperative planning with three-dimensional reconstruction of patient’s anatomy, rapid prototyping and simulation for endoscopic mitral valve repair. Interact Cardiovasc Thorac Surg, 2017, 24(2): 163-168.
|
12. |
Mankovich NJ, Cheeseman AM, Stoker NG. The display of three-dimensional anatomy with stereolithographic models. J Digit Imaging, 1990, 3(3): 200-203.
|
13. |
Dankowski R, Baszko A, Sutherland M, et al. 3D heart model printing for preparation of percutaneous structural interventions: description of the technology and case report. Kardiol Pol, 2014, 72(6): 546-551.
|
14. |
Giannopoulos AA, Steigner ML, George E, et al. Cardiothoracic applications of 3-dimensional printing. J Thorac Imaging, 2016, 31(5): 253-272.
|
15. |
Vukicevic M, Mosadegh B, Min JK, et al. Cardiac 3D printing and its future directions. JACC Cardiovasc Imaging, 2017, 10(2): 171-184.
|
16. |
Ibrahim D, Broilo TL, Heitz C, et al. Dimensional error of selective laser sintering, three-dimensional printing and polyJet models in the reproduction of mandibular anatomy. J Craniomaxillofac Surg, 2009, 37(3): 167-173.
|
17. |
Greil GF, Wolf I, Kuettner A, et al. Stereolithographic reproduction of complex cardiac morphology based on high spatial resolution imaging. Clin Res Cardiol, 2007, 96(3): 176-185.
|
18. |
Byrne N, Velasco Forte M, Tandon A, et al. A systematic review of image segmentation methodology, used in the additive manufacture of patient-specific 3D printed models of the cardiovascular system. JRSM Cardiovasc Dis, 2016, 5: 2048004016645467.
|
19. |
Mahmood F, Owais K, Taylor C, et al. Three-dimensional printing of mitral valve using echocardiographic data. JACC Cardiovasc Imaging, 2015, 8(2): 227-229.
|
20. |
Witschey WR, Pouch AM, McGarvey JR, et al. Three-dimensional ultrasound-derived physical mitral valve modeling. Ann Thorac Surg, 2014, 98(2): 691-694.
|
21. |
Navia JL, Cosgrove DM 3rd. Minimally invasive mitral valve operations. Ann Thorac Surg, 1996, 62(5): 1542-1544.
|
22. |
Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC), European Association for Cardio-Thoracic Surgery (EACTS), Vahanian A, et al. Guidelines on the management of valvular heart disease (version 2012). Eur Heart J, 2012, 33(19): 2451-2496.
|
23. |
Hayek E, Gring CN, Griffin BP. Mitral valve prolapse. Lancet, 2005, 365(9458): 507-518.
|
24. |
Owais K, Pal A, Matyal R, et al. Three-dimensional printing of the mitral annulus using echocardiographic data: science fiction or in the operating room next door. J Cardiothorac Vasc Anesth, 2014, 28(5): 1393-1396.
|
25. |
Verberkmoes NJ, Verberkmoes-Broeders EM. A novel low-fidelity simulator for both mitral valve and tricuspid valve surgery: the surgical skills trainer for classic open and minimally invasive techniques. Interact Cardiovasc Thorac Surg, 2013, 16(2): 97-101.
|
26. |
Hossien A. Low-fidelity simulation of mitral valve surgery: simple and effective trainer. J Surg Educ, 2015, 72(5): 904-909.
|
27. |
Nishimura RA, Otto CM, Bonow RO, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Thorac Cardiovasc Surg, 2014, 148(1): e1-e132.
|
28. |
诸葛瑞琪, 吴永健. 经导管二尖瓣修复术的研究及应用进展. 中华心血管病杂志, 2017, 45(4): 345-348.
|
29. |
诸葛瑞琪, 田艳蒙, 吴永健. 经导管二尖瓣置换的研究进展与展望. 中国循环杂志, 2016, (8): 819-821.
|
30. |
El Sabbagh A, Eleid MF, Matsumoto JM, et al. Three-dimensional prototyping for procedural simulation of transcatheter mitral valve replacement in patients with mitral annular calcification. Catheter Cardiovasc Interv, Catheter Cardiovasc Interv, 2018, 92(7): E537-E549.
|
31. |
Mashari A, Knio Z, Jeganathan J, et al. Hemodynamic testing of patient-specific mitral valves using a pulse duplicator: a clinical application of three-dimensional printing. J Cardiothorac Vasc Anesth, 2016, 30(5): 1278-1285.
|
32. |
Shi D, Liu K, Zhang X, et al. Applications of three-dimensional printing technology in the cardiovascular field. Intern Emerg Med, 2015, 10(7): 769-780.
|
33. |
Meier LM, Meineri M, Qua Hiansen J, et al. Structural and congenital heart disease interventions: the role of three-dimensional printing. Neth Heart J, 2017, 25(2): 65-75.
|
34. |
Fedorovich NE, Alblas J, Hennink WE, et al. Organ printing: the future of bone regeneration. Trends Biotechnol, 2011, 29(12): 601-606.
|
35. |
Duan B, Kapetanovic E, Hockaday LA, et al. Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater, 2014, 10(5): 1836-1846.
|