Transcatheter aortic valves implantation have been widely used in patients with high risk of non-surgical or surgical procedures since the first implantation in 2002, and have achieved good therapeutic results. However, as one of the main complications after transcatheter aortic valve implantation, paravalvular regurgitation seriously affects the outcome of patients. This article reviews recent researches on transcatheter aortic valve paravalvular regurgitation, and summarizes the influencing factors of paravalvular regurgitation after transcatheter aortic valve implantation and the corresponding countermeasures. This review can provide guidance and reference for clinical application and research of transcatheter aortic valves.
Citation: FU Bo, JIANG Nan. Research progress of paravalvular regurgitation for transcatheter aortic valve implantation. Chinese Journal of Clinical Thoracic and Cardiovascular Surgery, 2019, 26(12): 1258-1265. doi: 10.7507/1007-4848.201904042 Copy
Copyright © the editorial department of Chinese Journal of Clinical Thoracic and Cardiovascular Surgery of West China Medical Publisher. All rights reserved
1. | Cribier A, Eltchaninoff H, Bash A, et al. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation, 2002, 106(24): 3006-3008. |
2. | Leon MB, Smith CR, Mack M, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med, 2010, 363(17): 1597-1607. |
3. | Smith CR, Leon MB, Mack MJ, et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med, 2011, 364(23): 2187-2198. |
4. | Gotzmann M, Lindstaedt M, Mügge A. From pressure overload to volume overload: Aortic regurgitation after transcatheter aortic valve implantation. Am Heart J, 2012, 163(6): 903-911. |
5. | Athappan G, Patvardhan E, Tuzcu M, et al. Incidence, predictors, and outcomes of aortic regurgitation after transcatheter aortic valve replacement. J Am Coll Cardiol, 2013, 61(15): 1585-1595. |
6. | Vasa-Nicotera M, Sinning JM, Chin D, et al. Impact of paravalvular leakage on outcome in patients after transcatheter aortic valve implantation. JACC Cardiovasc Interv, 2012, 5(8): 858-865. |
7. | Toggweiler S, Humphries KH, Lee M, et al. 5-year outcome after transcatheter aortic valve implantation. J Am Coll Cardiol, 2013, 61(4): 413-419. |
8. | Colli A, Besola L, Salizzoni S, et al. Does pre-existing aortic regurgitation protect from death in patients who develop paravalvular leak after TAVI? Int J Cardiol, 2017, 233: 52-60. |
9. | Yang TH, Webb JG, Blanke P, et al. Incidence and severity of paravalvular aortic regurgitation with multidetector computed tomography nominal area oversizing or undersizing after transcatheter heart valve replacement with the Sapien 3: a comparison with the Sapien XT. JACC Cardiovasc Interv, 2015, 8(3): 462-471. |
10. | Binder RK, Stortecky S, Heg D, et al. Procedural results and clinical outcomes of transcatheter aortic valve implantation in Switzerland: an observational cohort study of Sapien 3 versus Sapien XT transcatheter heart valves. Circ Cardiovasc Interv, 2015, 8(10): e002653. |
11. | Enríquez-Rodríguez E, Amat-Santos IJ, Jiménez-Quevedo P, et al. Comparison of the hemodynamic performance of the balloon-expandable SAPIEN 3 versus self-expandable Evolut R transcatheter valve: a case-matched study. Rev Esp Cardiol, 2018, 71(9): 735-742. |
12. | Kong WK, Van Rosendael PJ, Frank VDK, et al. Impact of different iterations of devices and degree of aortic valve calcium on paravalvular regurgitation after transcatheter aortic valve implantation. Am J Cardiol, 2016, 118(4): 567-571. |
13. | Ando T, Briasoulis A, Holmes AA, et al. Sapien 3 versus Sapien XT prosthetic valves in transcatheter aortic valve implantation: A meta-analysis. Int J Cardiol, 2016, 220: 472-478. |
14. | Pibarot P, Hahn RT, Weissman NJ, et al. Association of paravalvular regurgitation with 1-year outcomes after transcatheter aortic valve replacement with the SAPIEN 3 valve. JAMA Cardiol, 2017, 2(11): 1208-1216. |
15. | Blanke P, Pibarot P, Hahn R, et al. Computed tomography–based oversizing degrees and incidence of paravalvular regurgitation of a new generation transcatheter heart valve. JACC Cardiovasc Interv, 2017, 10(8): 810-820. |
16. | Tummala R, Banerjee K, Mick S, et al. Clinical and procedural outcomes with the SAPIEN 3 versus the SAPIEN XT prosthetic valves in transcatheter aortic valve replacement: a systematic review and meta-analysis. Catheter Cardio Inter, 2018, 92(3): e149-158. |
17. | Schulz E, Jabs A, Gori T, et al. Transcatheter aortic valve implantation with the new-generation Evolut RTM: comparison with CoreValve® in a single center cohort. Int J Cardiol Heart Vasc, 2016, 12: 52-56. |
18. | Gomes B, Geis NA, Chorianopoulos E, et al. Improvements of procedural results with a new-generation self-expanding transfemoral aortic valve prosthesis in comparison to the old-generation device. J Inter Cardiol, 2017, 30(1): 72-78. |
19. | Noble S, Stortecky S, Heg D, et al. Comparison of procedural and clinical outcomes with Evolut R versus Medtronic CoreValve: a Swiss TAVI registry analysis. EuroIntervention, 2017, 12(18): e2170-e2176. |
20. | Giannini C, Carlo MD, Tamburino C, et al. Transcathether aortic valve implantation with the new repositionable self-expandable Evolut R versus CoreValve system: A case-matched comparison. Int J Cardiol, 2017, 243: 126-131. |
21. | Todaro D, Barbanti M, Picci A, et al. Early and mid-term outcomes of transcatheter aortic valve replacement using the new generation self-expanding Corevalve Evolut R Device. Structural Heart, 2018, 2(3): 229-234. |
22. | Kowalewski M, Gozdek M, Raffa GM, et al. Transcathether aortic valve implantation with the new repositionable self-expandable Medtronic Evolut R vs. CoreValve system: evidence on the benefit of a meta-analytical approach. J Cardiovasc M, 2019, 20(4): 226-236. |
23. | Barbanti M, Webb J, Gilard M, et al. Transcatheter aortic valve implantation in 2017: state of the art. Eurointervention, 2017, 13(AA): AA11-AA21. |
24. | Binder RK, RodésCabau J, Wood DA, et al. Transcatheter aortic valve replacement with the SAPIEN 3: a new balloon-expandable transcatheter heart valve. JACC Cardiovasc Interv, 2013, 6(3): 293-300. |
25. | Marcoff L, Khalique OK, Kodali S, et al. TCT-105 Device-to-annulus pre-deployment angle by intraoperative transesophageal echocardiography predicts paravalvular regurgitation following transcatheter aortic valve replacement. J Am Coll Cardiol, 2013, 62(18): B34-B34. |
26. | Theron A, Pinto J, Grisoli D, et al. Patient-prosthesis mismatch in new generationtrans-catheter heart valves: a propensity scoreanalysis. Eur Heart J-Card Im, 2017, 19(2): 1-9. |
27. | Fanning J P, Platts DG, Walters DL, et al. Transcatheter aortic valve implantation (TAVI): valve design and evolution. Int J Cardiol, 2013, 168(3): 1822-1831. |
28. | Chang J, Liu RH, Zhong SP, et al. Effect of stent designs on the paravalvular regurgitationof transcatheter aortic valve implantation. Int J Comp Meth, 2019, 16(3): 1842007. |
29. | Pilgrim T, Lee JKT, O’Sullivan CJ, et al. Early versus newer generation devices for transcatheter aortic valve implantation in routine clinical practicea propensity score matched analysis. Open Heart, 2018, 5(1): 1-8. |
30. | Rogers T, Steinvil A, Buchanan K, et al. Contemporary transcatheter aortic valve replacement with third-generation balloon-expandable versus self-expanding devices. J Interv Cardiol, 2017, 30(4): 356-361. |
31. | Ben-Shoshan J, Konigstein M, Zahler D, et al. Comparison of the Edwards SAPIEN S3 versus Medtronic Evolut-R Devices for transcatheter aortic valve implantation. Am J Cardiol, 2016, 119(2): 302-307. |
32. | Gooley RP, Talman AH, Cameron JD, et al. Comparison of self-expanding and mechanically expanded transcatheter aortic valve prostheses. JACC Cardiovasc Interv, 2015, 8(7): 962-971. |
33. | Musa TA, Uddin A, Dobson LE, et al. Cardiovascular magnetic resonance assessment of 1st generation CoreValve and 2nd generation Lotus valves. J Interv Cardiol, 2017, 31(3): 391-399. |
34. | Asch FM, Vannan MA, Singh S, et al. Hemodynamic and echocardiographic comparison of the Lotus and CoreValve transcatheter aortic valves in patients with high and extreme surgical risk: an analysis from the REPRISE Ⅲ randomized controlled trial (repositionable percutaneous replacement of stenotic aortic valve through implantation of lotus valve system-randomized clinical evaluation). Circulation, 2018, 137(24): 2557-2567. |
35. | Blackman DJ, Meredith IT, Dumonteil N. Predictors of paravalvular regurgitation following implantation of the fully repositionable and retrievable Lotus transcatheter aortic valve (from the REPRISE II trial extended cohort). Am J Cardiol, 2017, 120(2): 292-299. |
36. | Perlman GY, Cheung A, Dumont E, et al. Transcatheter aortic valve replacement with the Portico valve: One-year results of the early Canadian experience. EuroIntervention, 2017, 12(13): 1653-1659. |
37. | Denegri A, Nietlispach F, Kottwitz J, et al. Real-world procedural and 30-day outcome using the Portico transcatheter aortic valve prosthesis: A large single center cohort. Int J Cardiol, 2018, 253: 40-44. |
38. | Taramasso M, Denegri A, Kuwata S, et al. Feasibility and safety of transfemoral sheathless portico aortic valve implantation preliminary results in a single center experience. Catheter Cardio Inter, 2017, 91(3): 533-539. |
39. | Mauri V, Deuschl F, Frohn T, et al. Predictors of paravalvular regurgitation and permanent pacemaker implantation after TAVR with a next-generation self-expanding device. Clin Res Cardiol, 2018, 107(19): 1-10. |
40. | 刘镕珲, 金昌, 冯文韬, 等. 不同钙化模式对经导管主动脉瓣膜植入效果影响的数值模拟研究. 医用生物力学, 2017, 32(6): 506-512. |
41. | Kim WK, Blumenstein J, Liebetrau C, et al. Comparison of outcomes using balloon-expandable versus self-expanding transcatheter prostheses according to the extent of aortic valve calcification. Clin Res Cardiol, 2017, 106(12): 995-1004. |
42. | Rodríguez-Olivares R, El FN, Rahhab Z, et al. Impact of device-host interaction on paravalvular aortic regurgitation with different transcatheter heart valves. Cardiovasc Revasc Med, 2019, 20(2): 126-132. |
43. | Oh JK, Little SH, Abdelmoneim SS, et al. Regression of paravalvular aortic regurgitation and remodeling of self-expanding transcatheter aortic valve. JACC Cardiovasc Imaging, 2015, 8(12): 1364-1375. |
44. | Rodríguez-Olivares R, Rahhab Z, Faquir NE, et al. Differences in frame geometry between balloon-expandable and self-expanding transcatheter heart valves and association with aortic regurgitation. Rev Esp Cardiol, 2016, 69(4): 392-400. |
45. | D’Ancona G, Dißmann M, Heinze H, et al. Transcatheter aortic valve replacement with the 34 mm Medtronic Evolut valve. Neth Heart J, 2018, 26(7-8): 401-408. |
46. | Tzamtzis S, Viquerat J, Yap J, et al. Numerical analysis of the radial force produced by the Medtronic-CoreValve and Edwards-SAPIEN after transcatheter aortic valve implantation (TAVI). Med Eng Phys, 2013, 35(1): 125-130. |
47. | Egron S, Fujita B, GullónL, et al. Radial Force: An underestimated parameter in oversizing transcatheter aortic valve replacement prostheses: in vitro analysis with five commercialized valves. Asaio J, 2018, 64(4): 536-543. |
48. | Chourdakis E, Koniari I, Kounis NG, et al. The role of echocardiography and CT angiography in transcatheter aortic valve implantation patients. J Geriatr Cardiol, 2018, 15(1): 86-94. |
49. | Willson AB, Webb JG, Freeman M, et al. Computed tomography-based sizing recommendations for transcatheter aortic valve replacement with balloon-expandable valves: Comparison with transesophageal echocardiography and rationale for implementation in a prospective trial. J Cardiovasc Comput, 2012, 6(6): 406-414. |
50. | Gareth C, Phillip JT, Jayme B. Quantitative assessment of paravalvular regurgitation following transcatheter aortic valve replacement. J Cardio Magn Reson, 2015, 17(32): 1-6. |
51. | Morganti S, Brambilla N, Petronio AS, et al. Prediction of patient-specific post-operative outcomes of TAVI procedure: The impact of the positioning strategy on valve performance. J Biomech, 2016, 49(12): 2513-2519. |
52. | Bianchi M, Marom G, Ghosh RP, et al. Patient-specific simulation of transcatheter aortic valve replacement: impact of deployment options on paravalvular leakage. Biomech Model Mechan, 2019, 18(2): 435-451. |
53. | Leber AW, Kasel M, Ischinger T, et al. , Aortic valve calcium score as a predictor for outcome after TAVI using the CoreValve revalving system. Int J Cardiol, 2013, 166(3): 652-657. |
54. | Ryś M, Hryniewiecki T, Michałowska I, et al. Quantitative estimation of aortic valve calcification in multislice computed tomography in predicting the development of paravalvular leaks following transcatheter aortic valve replacement. Adv Interv Cardiol, 2018, 14, 1(51): 85-89. |
55. | Khalique OK, Hahn RT, Gada H, et al. Quantity and location of aortic valve complex calcification predicts severity and location of paravalvular regurgitation and frequency of post-dilation after balloon-expandable transcatheter aortic valve replacement. JACC Cardiovasc Interv, 2014, 7(8): 885-894. |
56. | Sun W, Li K, Sirois E. Simulated elliptical bioprosthetic valve deformation: Implications for asymmetric transcatheter valve deployment. J Biomech, 2010, 43(16): 3085-3090. |
57. | Abramowitz Y, Maeno Y, Chakravarty T, et al. Aortic angulation attenuates procedural success following self-expandable but not balloon-expandable TAVR. JACC Cardiovasc Imaging, 2016, 9(8): 964-972. |
58. | Généreux P, Head JS, Hahn R, et al. Paravalvular leak after transcatheter aortic valve replacement: the new Achilles' heel? J Am Coll Cardiol, 2013, 61(11): 1125-1136. |
59. | Vy P, Auffret V, Badel P, et al. Review of patient-specific simulations of transcatheter aortic valve implantation. Int J Adv Eng Sci Appl Math, 2016, 8(1): 2-24. |
60. | Morganti S, Conti M, Aiello M, et al. Simulation of transcatheter aortic valve implantation through patient-specific finite element analysis: Two clinical cases. J Biomech, 2014, 47(11): 2547-2555. |
61. | De Jaegere P, De Santis G, Rodriguez-Olivares R, et al. Patient-specific computer modeling to predict aortic regurgitation after transcatheter aortic valve replacement. JACC Cardiovasc Interv, 2016, 9(5): 508-512. |
62. | Schultz C, Rodriguez-Olivares R, Bosmans J, et al. Patient-specific image-based computer simulation for theprediction of valve morphology and calcium displacement after TAVI with the Medtronic CoreValve and the Edwards SAPIEN valve. Eurointervention, 2016, 11(9): 1044-1052. |
63. | Ripley B, Kelil T, Cheezum MK, et al. 3D printing based on cardiac CT assists anatomic visualization prior to transcatheter aortic valve replacement. J Cardiovasc Comput, 2016, 10(1): 28-36. |
64. | Tanaka Y, Saito S, Sasuga S, et al. Quantitative assessment of paravalvular leakage after transcatheter aortic valve replacement using a patient-specific pulsatile flow model. Int J Cardiol, 2018, 258: 313-320. |
- 1. Cribier A, Eltchaninoff H, Bash A, et al. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation, 2002, 106(24): 3006-3008.
- 2. Leon MB, Smith CR, Mack M, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med, 2010, 363(17): 1597-1607.
- 3. Smith CR, Leon MB, Mack MJ, et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med, 2011, 364(23): 2187-2198.
- 4. Gotzmann M, Lindstaedt M, Mügge A. From pressure overload to volume overload: Aortic regurgitation after transcatheter aortic valve implantation. Am Heart J, 2012, 163(6): 903-911.
- 5. Athappan G, Patvardhan E, Tuzcu M, et al. Incidence, predictors, and outcomes of aortic regurgitation after transcatheter aortic valve replacement. J Am Coll Cardiol, 2013, 61(15): 1585-1595.
- 6. Vasa-Nicotera M, Sinning JM, Chin D, et al. Impact of paravalvular leakage on outcome in patients after transcatheter aortic valve implantation. JACC Cardiovasc Interv, 2012, 5(8): 858-865.
- 7. Toggweiler S, Humphries KH, Lee M, et al. 5-year outcome after transcatheter aortic valve implantation. J Am Coll Cardiol, 2013, 61(4): 413-419.
- 8. Colli A, Besola L, Salizzoni S, et al. Does pre-existing aortic regurgitation protect from death in patients who develop paravalvular leak after TAVI? Int J Cardiol, 2017, 233: 52-60.
- 9. Yang TH, Webb JG, Blanke P, et al. Incidence and severity of paravalvular aortic regurgitation with multidetector computed tomography nominal area oversizing or undersizing after transcatheter heart valve replacement with the Sapien 3: a comparison with the Sapien XT. JACC Cardiovasc Interv, 2015, 8(3): 462-471.
- 10. Binder RK, Stortecky S, Heg D, et al. Procedural results and clinical outcomes of transcatheter aortic valve implantation in Switzerland: an observational cohort study of Sapien 3 versus Sapien XT transcatheter heart valves. Circ Cardiovasc Interv, 2015, 8(10): e002653.
- 11. Enríquez-Rodríguez E, Amat-Santos IJ, Jiménez-Quevedo P, et al. Comparison of the hemodynamic performance of the balloon-expandable SAPIEN 3 versus self-expandable Evolut R transcatheter valve: a case-matched study. Rev Esp Cardiol, 2018, 71(9): 735-742.
- 12. Kong WK, Van Rosendael PJ, Frank VDK, et al. Impact of different iterations of devices and degree of aortic valve calcium on paravalvular regurgitation after transcatheter aortic valve implantation. Am J Cardiol, 2016, 118(4): 567-571.
- 13. Ando T, Briasoulis A, Holmes AA, et al. Sapien 3 versus Sapien XT prosthetic valves in transcatheter aortic valve implantation: A meta-analysis. Int J Cardiol, 2016, 220: 472-478.
- 14. Pibarot P, Hahn RT, Weissman NJ, et al. Association of paravalvular regurgitation with 1-year outcomes after transcatheter aortic valve replacement with the SAPIEN 3 valve. JAMA Cardiol, 2017, 2(11): 1208-1216.
- 15. Blanke P, Pibarot P, Hahn R, et al. Computed tomography–based oversizing degrees and incidence of paravalvular regurgitation of a new generation transcatheter heart valve. JACC Cardiovasc Interv, 2017, 10(8): 810-820.
- 16. Tummala R, Banerjee K, Mick S, et al. Clinical and procedural outcomes with the SAPIEN 3 versus the SAPIEN XT prosthetic valves in transcatheter aortic valve replacement: a systematic review and meta-analysis. Catheter Cardio Inter, 2018, 92(3): e149-158.
- 17. Schulz E, Jabs A, Gori T, et al. Transcatheter aortic valve implantation with the new-generation Evolut RTM: comparison with CoreValve® in a single center cohort. Int J Cardiol Heart Vasc, 2016, 12: 52-56.
- 18. Gomes B, Geis NA, Chorianopoulos E, et al. Improvements of procedural results with a new-generation self-expanding transfemoral aortic valve prosthesis in comparison to the old-generation device. J Inter Cardiol, 2017, 30(1): 72-78.
- 19. Noble S, Stortecky S, Heg D, et al. Comparison of procedural and clinical outcomes with Evolut R versus Medtronic CoreValve: a Swiss TAVI registry analysis. EuroIntervention, 2017, 12(18): e2170-e2176.
- 20. Giannini C, Carlo MD, Tamburino C, et al. Transcathether aortic valve implantation with the new repositionable self-expandable Evolut R versus CoreValve system: A case-matched comparison. Int J Cardiol, 2017, 243: 126-131.
- 21. Todaro D, Barbanti M, Picci A, et al. Early and mid-term outcomes of transcatheter aortic valve replacement using the new generation self-expanding Corevalve Evolut R Device. Structural Heart, 2018, 2(3): 229-234.
- 22. Kowalewski M, Gozdek M, Raffa GM, et al. Transcathether aortic valve implantation with the new repositionable self-expandable Medtronic Evolut R vs. CoreValve system: evidence on the benefit of a meta-analytical approach. J Cardiovasc M, 2019, 20(4): 226-236.
- 23. Barbanti M, Webb J, Gilard M, et al. Transcatheter aortic valve implantation in 2017: state of the art. Eurointervention, 2017, 13(AA): AA11-AA21.
- 24. Binder RK, RodésCabau J, Wood DA, et al. Transcatheter aortic valve replacement with the SAPIEN 3: a new balloon-expandable transcatheter heart valve. JACC Cardiovasc Interv, 2013, 6(3): 293-300.
- 25. Marcoff L, Khalique OK, Kodali S, et al. TCT-105 Device-to-annulus pre-deployment angle by intraoperative transesophageal echocardiography predicts paravalvular regurgitation following transcatheter aortic valve replacement. J Am Coll Cardiol, 2013, 62(18): B34-B34.
- 26. Theron A, Pinto J, Grisoli D, et al. Patient-prosthesis mismatch in new generationtrans-catheter heart valves: a propensity scoreanalysis. Eur Heart J-Card Im, 2017, 19(2): 1-9.
- 27. Fanning J P, Platts DG, Walters DL, et al. Transcatheter aortic valve implantation (TAVI): valve design and evolution. Int J Cardiol, 2013, 168(3): 1822-1831.
- 28. Chang J, Liu RH, Zhong SP, et al. Effect of stent designs on the paravalvular regurgitationof transcatheter aortic valve implantation. Int J Comp Meth, 2019, 16(3): 1842007.
- 29. Pilgrim T, Lee JKT, O’Sullivan CJ, et al. Early versus newer generation devices for transcatheter aortic valve implantation in routine clinical practicea propensity score matched analysis. Open Heart, 2018, 5(1): 1-8.
- 30. Rogers T, Steinvil A, Buchanan K, et al. Contemporary transcatheter aortic valve replacement with third-generation balloon-expandable versus self-expanding devices. J Interv Cardiol, 2017, 30(4): 356-361.
- 31. Ben-Shoshan J, Konigstein M, Zahler D, et al. Comparison of the Edwards SAPIEN S3 versus Medtronic Evolut-R Devices for transcatheter aortic valve implantation. Am J Cardiol, 2016, 119(2): 302-307.
- 32. Gooley RP, Talman AH, Cameron JD, et al. Comparison of self-expanding and mechanically expanded transcatheter aortic valve prostheses. JACC Cardiovasc Interv, 2015, 8(7): 962-971.
- 33. Musa TA, Uddin A, Dobson LE, et al. Cardiovascular magnetic resonance assessment of 1st generation CoreValve and 2nd generation Lotus valves. J Interv Cardiol, 2017, 31(3): 391-399.
- 34. Asch FM, Vannan MA, Singh S, et al. Hemodynamic and echocardiographic comparison of the Lotus and CoreValve transcatheter aortic valves in patients with high and extreme surgical risk: an analysis from the REPRISE Ⅲ randomized controlled trial (repositionable percutaneous replacement of stenotic aortic valve through implantation of lotus valve system-randomized clinical evaluation). Circulation, 2018, 137(24): 2557-2567.
- 35. Blackman DJ, Meredith IT, Dumonteil N. Predictors of paravalvular regurgitation following implantation of the fully repositionable and retrievable Lotus transcatheter aortic valve (from the REPRISE II trial extended cohort). Am J Cardiol, 2017, 120(2): 292-299.
- 36. Perlman GY, Cheung A, Dumont E, et al. Transcatheter aortic valve replacement with the Portico valve: One-year results of the early Canadian experience. EuroIntervention, 2017, 12(13): 1653-1659.
- 37. Denegri A, Nietlispach F, Kottwitz J, et al. Real-world procedural and 30-day outcome using the Portico transcatheter aortic valve prosthesis: A large single center cohort. Int J Cardiol, 2018, 253: 40-44.
- 38. Taramasso M, Denegri A, Kuwata S, et al. Feasibility and safety of transfemoral sheathless portico aortic valve implantation preliminary results in a single center experience. Catheter Cardio Inter, 2017, 91(3): 533-539.
- 39. Mauri V, Deuschl F, Frohn T, et al. Predictors of paravalvular regurgitation and permanent pacemaker implantation after TAVR with a next-generation self-expanding device. Clin Res Cardiol, 2018, 107(19): 1-10.
- 40. 刘镕珲, 金昌, 冯文韬, 等. 不同钙化模式对经导管主动脉瓣膜植入效果影响的数值模拟研究. 医用生物力学, 2017, 32(6): 506-512.
- 41. Kim WK, Blumenstein J, Liebetrau C, et al. Comparison of outcomes using balloon-expandable versus self-expanding transcatheter prostheses according to the extent of aortic valve calcification. Clin Res Cardiol, 2017, 106(12): 995-1004.
- 42. Rodríguez-Olivares R, El FN, Rahhab Z, et al. Impact of device-host interaction on paravalvular aortic regurgitation with different transcatheter heart valves. Cardiovasc Revasc Med, 2019, 20(2): 126-132.
- 43. Oh JK, Little SH, Abdelmoneim SS, et al. Regression of paravalvular aortic regurgitation and remodeling of self-expanding transcatheter aortic valve. JACC Cardiovasc Imaging, 2015, 8(12): 1364-1375.
- 44. Rodríguez-Olivares R, Rahhab Z, Faquir NE, et al. Differences in frame geometry between balloon-expandable and self-expanding transcatheter heart valves and association with aortic regurgitation. Rev Esp Cardiol, 2016, 69(4): 392-400.
- 45. D’Ancona G, Dißmann M, Heinze H, et al. Transcatheter aortic valve replacement with the 34 mm Medtronic Evolut valve. Neth Heart J, 2018, 26(7-8): 401-408.
- 46. Tzamtzis S, Viquerat J, Yap J, et al. Numerical analysis of the radial force produced by the Medtronic-CoreValve and Edwards-SAPIEN after transcatheter aortic valve implantation (TAVI). Med Eng Phys, 2013, 35(1): 125-130.
- 47. Egron S, Fujita B, GullónL, et al. Radial Force: An underestimated parameter in oversizing transcatheter aortic valve replacement prostheses: in vitro analysis with five commercialized valves. Asaio J, 2018, 64(4): 536-543.
- 48. Chourdakis E, Koniari I, Kounis NG, et al. The role of echocardiography and CT angiography in transcatheter aortic valve implantation patients. J Geriatr Cardiol, 2018, 15(1): 86-94.
- 49. Willson AB, Webb JG, Freeman M, et al. Computed tomography-based sizing recommendations for transcatheter aortic valve replacement with balloon-expandable valves: Comparison with transesophageal echocardiography and rationale for implementation in a prospective trial. J Cardiovasc Comput, 2012, 6(6): 406-414.
- 50. Gareth C, Phillip JT, Jayme B. Quantitative assessment of paravalvular regurgitation following transcatheter aortic valve replacement. J Cardio Magn Reson, 2015, 17(32): 1-6.
- 51. Morganti S, Brambilla N, Petronio AS, et al. Prediction of patient-specific post-operative outcomes of TAVI procedure: The impact of the positioning strategy on valve performance. J Biomech, 2016, 49(12): 2513-2519.
- 52. Bianchi M, Marom G, Ghosh RP, et al. Patient-specific simulation of transcatheter aortic valve replacement: impact of deployment options on paravalvular leakage. Biomech Model Mechan, 2019, 18(2): 435-451.
- 53. Leber AW, Kasel M, Ischinger T, et al. , Aortic valve calcium score as a predictor for outcome after TAVI using the CoreValve revalving system. Int J Cardiol, 2013, 166(3): 652-657.
- 54. Ryś M, Hryniewiecki T, Michałowska I, et al. Quantitative estimation of aortic valve calcification in multislice computed tomography in predicting the development of paravalvular leaks following transcatheter aortic valve replacement. Adv Interv Cardiol, 2018, 14, 1(51): 85-89.
- 55. Khalique OK, Hahn RT, Gada H, et al. Quantity and location of aortic valve complex calcification predicts severity and location of paravalvular regurgitation and frequency of post-dilation after balloon-expandable transcatheter aortic valve replacement. JACC Cardiovasc Interv, 2014, 7(8): 885-894.
- 56. Sun W, Li K, Sirois E. Simulated elliptical bioprosthetic valve deformation: Implications for asymmetric transcatheter valve deployment. J Biomech, 2010, 43(16): 3085-3090.
- 57. Abramowitz Y, Maeno Y, Chakravarty T, et al. Aortic angulation attenuates procedural success following self-expandable but not balloon-expandable TAVR. JACC Cardiovasc Imaging, 2016, 9(8): 964-972.
- 58. Généreux P, Head JS, Hahn R, et al. Paravalvular leak after transcatheter aortic valve replacement: the new Achilles' heel? J Am Coll Cardiol, 2013, 61(11): 1125-1136.
- 59. Vy P, Auffret V, Badel P, et al. Review of patient-specific simulations of transcatheter aortic valve implantation. Int J Adv Eng Sci Appl Math, 2016, 8(1): 2-24.
- 60. Morganti S, Conti M, Aiello M, et al. Simulation of transcatheter aortic valve implantation through patient-specific finite element analysis: Two clinical cases. J Biomech, 2014, 47(11): 2547-2555.
- 61. De Jaegere P, De Santis G, Rodriguez-Olivares R, et al. Patient-specific computer modeling to predict aortic regurgitation after transcatheter aortic valve replacement. JACC Cardiovasc Interv, 2016, 9(5): 508-512.
- 62. Schultz C, Rodriguez-Olivares R, Bosmans J, et al. Patient-specific image-based computer simulation for theprediction of valve morphology and calcium displacement after TAVI with the Medtronic CoreValve and the Edwards SAPIEN valve. Eurointervention, 2016, 11(9): 1044-1052.
- 63. Ripley B, Kelil T, Cheezum MK, et al. 3D printing based on cardiac CT assists anatomic visualization prior to transcatheter aortic valve replacement. J Cardiovasc Comput, 2016, 10(1): 28-36.
- 64. Tanaka Y, Saito S, Sasuga S, et al. Quantitative assessment of paravalvular leakage after transcatheter aortic valve replacement using a patient-specific pulsatile flow model. Int J Cardiol, 2018, 258: 313-320.
Journal type citation(12)
1. | 毛进璞. 老年慢性阻塞性肺疾病急性加重期合并肺栓塞患者中性粒细胞与淋巴细胞比值、红细胞分布宽度水平观察. 大医生. 2025(01): 116-118 . ![]() | |
2. | 鲜海英,何清华. 高原地区COPD合并肺心病的风险因素及其与血清hs-CRP、NT-proBNP、TNF-α的关系. 川北医学院学报. 2024(01): 63-66+83 . ![]() | |
3. | 王鹏程,袁林栋,许文娟,赵培革. 慢性阻塞性肺疾病急性加重严重程度评估研究进展. 中国呼吸与危重监护杂志. 2024(03): 206-210 . ![]() | |
4. | 宋玉良,王永. 慢性阻塞性肺疾病急性加重患者外周血红细胞分布宽度、嗜酸性粒细胞、B型钠尿肽的诊断价值及相关性分析. 分子诊断与治疗杂志. 2024(05): 890-893+903 . ![]() | |
5. | 张春红,程波,曹建. 细菌性肺炎患者血清LTB4、NLCR及CRP/PA变化及其与肺损伤程度的关系. 中南医学科学杂志. 2024(04): 596-598+672 . ![]() | |
6. | 张灵,杨荀,蒋水平,李小华. 老年慢性阻塞性肺疾病诊断与治疗新进展. 中华肺部疾病杂志(电子版). 2023(02): 285-289 . ![]() | |
7. | 唐小波,宋霜,周胃雯,林先珍,李香花,陈莹晖. 外周血NLR、Fib对老年慢性阻塞性肺疾病稳定期患者急性发作的预测价值. 中国老年学杂志. 2023(15): 3670-3673 . ![]() | |
8. | 刘亚敏,王建伟,吕建华. 血清PCT、NT-proBNP、WBC检测对重症慢性阻塞性肺疾病患者疾病转归的预测价值. 临床医学. 2023(08): 44-46 . ![]() | |
9. | 刁盛博,郑亚妹,邓国民. 茚达特罗格隆溴铵对慢性阻塞性肺疾病急性加重期患者肺功能及血清炎性因子的影响. 中国药业. 2023(17): 97-100 . ![]() | |
10. | 宗明园,过茜娜. NLR联合Fib预测慢性阻塞性肺疾病急性加重期住院死亡. 国际老年医学杂志. 2023(05): 565-569 . ![]() | |
11. | 柴卫芳,段小凯,樊实真,余勇,田金亚,侯俊飞. RDW/ALB值对COPD急性加重期患者临床预后的预测分析. 河南医学研究. 2023(24): 4456-4460 . ![]() | |
12. | 王婧雯,孙辉,路尧. 血清IL-33表达水平对慢性阻塞性肺疾病患者发生急性加重的预测价值. 齐齐哈尔医学院学报. 2022(18): 1732-1735 . ![]() |
Other types of references(4)
1. | 李静. FAR、NLR、PLR在慢阻肺急性加重期的应用价值[D]. 河南大学. 2023. ![]() | |
2. | 刘欢. 慢性阻塞性肺疾病急性加重诊断模型的建立与验证研究[D]. 重庆医科大学. 2023. ![]() | |
3. | 刘佳丽. 红细胞分布宽度在慢性阻塞性肺疾病临床意义中的Meta分析[D]. 山西医科大学. 2023. ![]() | |
4. | 王鹏程. 探究SPO_2、SII、PLR、NLR在预测AECOPD患者全因住院死亡率中的价值[D]. 青岛大学. 2024. ![]() |
-
Previous Article
The advancements in the relationship between imaging features of lung-ground glass opacity and prognosis of lung adenocarcinoma TANGRu, LYU Mengyuan, ZHOU Jian, WANG Zihuai, CHEN Nan, LIU Lunxu -
Next Article
Advances in transcatheter aortic valve replacement for pure native aortic regurgitation LIULulu, SHI Jun, QIAN Hong, GUO Yingqiang