Transcatheter aortic valves implantation have been widely used in patients with high risk of non-surgical or surgical procedures since the first implantation in 2002, and have achieved good therapeutic results. However, as one of the main complications after transcatheter aortic valve implantation, paravalvular regurgitation seriously affects the outcome of patients. This article reviews recent researches on transcatheter aortic valve paravalvular regurgitation, and summarizes the influencing factors of paravalvular regurgitation after transcatheter aortic valve implantation and the corresponding countermeasures. This review can provide guidance and reference for clinical application and research of transcatheter aortic valves.
Citation: FU Bo, JIANG Nan. Research progress of paravalvular regurgitation for transcatheter aortic valve implantation. Chinese Journal of Clinical Thoracic and Cardiovascular Surgery, 2019, 26(12): 1258-1265. doi: 10.7507/1007-4848.201904042 Copy
1. | Cribier A, Eltchaninoff H, Bash A, et al. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation, 2002, 106(24): 3006-3008. |
2. | Leon MB, Smith CR, Mack M, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med, 2010, 363(17): 1597-1607. |
3. | Smith CR, Leon MB, Mack MJ, et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med, 2011, 364(23): 2187-2198. |
4. | Gotzmann M, Lindstaedt M, Mügge A. From pressure overload to volume overload: Aortic regurgitation after transcatheter aortic valve implantation. Am Heart J, 2012, 163(6): 903-911. |
5. | Athappan G, Patvardhan E, Tuzcu M, et al. Incidence, predictors, and outcomes of aortic regurgitation after transcatheter aortic valve replacement. J Am Coll Cardiol, 2013, 61(15): 1585-1595. |
6. | Vasa-Nicotera M, Sinning JM, Chin D, et al. Impact of paravalvular leakage on outcome in patients after transcatheter aortic valve implantation. JACC Cardiovasc Interv, 2012, 5(8): 858-865. |
7. | Toggweiler S, Humphries KH, Lee M, et al. 5-year outcome after transcatheter aortic valve implantation. J Am Coll Cardiol, 2013, 61(4): 413-419. |
8. | Colli A, Besola L, Salizzoni S, et al. Does pre-existing aortic regurgitation protect from death in patients who develop paravalvular leak after TAVI? Int J Cardiol, 2017, 233: 52-60. |
9. | Yang TH, Webb JG, Blanke P, et al. Incidence and severity of paravalvular aortic regurgitation with multidetector computed tomography nominal area oversizing or undersizing after transcatheter heart valve replacement with the Sapien 3: a comparison with the Sapien XT. JACC Cardiovasc Interv, 2015, 8(3): 462-471. |
10. | Binder RK, Stortecky S, Heg D, et al. Procedural results and clinical outcomes of transcatheter aortic valve implantation in Switzerland: an observational cohort study of Sapien 3 versus Sapien XT transcatheter heart valves. Circ Cardiovasc Interv, 2015, 8(10): e002653. |
11. | Enríquez-Rodríguez E, Amat-Santos IJ, Jiménez-Quevedo P, et al. Comparison of the hemodynamic performance of the balloon-expandable SAPIEN 3 versus self-expandable Evolut R transcatheter valve: a case-matched study. Rev Esp Cardiol, 2018, 71(9): 735-742. |
12. | Kong WK, Van Rosendael PJ, Frank VDK, et al. Impact of different iterations of devices and degree of aortic valve calcium on paravalvular regurgitation after transcatheter aortic valve implantation. Am J Cardiol, 2016, 118(4): 567-571. |
13. | Ando T, Briasoulis A, Holmes AA, et al. Sapien 3 versus Sapien XT prosthetic valves in transcatheter aortic valve implantation: A meta-analysis. Int J Cardiol, 2016, 220: 472-478. |
14. | Pibarot P, Hahn RT, Weissman NJ, et al. Association of paravalvular regurgitation with 1-year outcomes after transcatheter aortic valve replacement with the SAPIEN 3 valve. JAMA Cardiol, 2017, 2(11): 1208-1216. |
15. | Blanke P, Pibarot P, Hahn R, et al. Computed tomography–based oversizing degrees and incidence of paravalvular regurgitation of a new generation transcatheter heart valve. JACC Cardiovasc Interv, 2017, 10(8): 810-820. |
16. | Tummala R, Banerjee K, Mick S, et al. Clinical and procedural outcomes with the SAPIEN 3 versus the SAPIEN XT prosthetic valves in transcatheter aortic valve replacement: a systematic review and meta-analysis. Catheter Cardio Inter, 2018, 92(3): e149-158. |
17. | Schulz E, Jabs A, Gori T, et al. Transcatheter aortic valve implantation with the new-generation Evolut RTM: comparison with CoreValve® in a single center cohort. Int J Cardiol Heart Vasc, 2016, 12: 52-56. |
18. | Gomes B, Geis NA, Chorianopoulos E, et al. Improvements of procedural results with a new-generation self-expanding transfemoral aortic valve prosthesis in comparison to the old-generation device. J Inter Cardiol, 2017, 30(1): 72-78. |
19. | Noble S, Stortecky S, Heg D, et al. Comparison of procedural and clinical outcomes with Evolut R versus Medtronic CoreValve: a Swiss TAVI registry analysis. EuroIntervention, 2017, 12(18): e2170-e2176. |
20. | Giannini C, Carlo MD, Tamburino C, et al. Transcathether aortic valve implantation with the new repositionable self-expandable Evolut R versus CoreValve system: A case-matched comparison. Int J Cardiol, 2017, 243: 126-131. |
21. | Todaro D, Barbanti M, Picci A, et al. Early and mid-term outcomes of transcatheter aortic valve replacement using the new generation self-expanding Corevalve Evolut R Device. Structural Heart, 2018, 2(3): 229-234. |
22. | Kowalewski M, Gozdek M, Raffa GM, et al. Transcathether aortic valve implantation with the new repositionable self-expandable Medtronic Evolut R vs. CoreValve system: evidence on the benefit of a meta-analytical approach. J Cardiovasc M, 2019, 20(4): 226-236. |
23. | Barbanti M, Webb J, Gilard M, et al. Transcatheter aortic valve implantation in 2017: state of the art. Eurointervention, 2017, 13(AA): AA11-AA21. |
24. | Binder RK, RodésCabau J, Wood DA, et al. Transcatheter aortic valve replacement with the SAPIEN 3: a new balloon-expandable transcatheter heart valve. JACC Cardiovasc Interv, 2013, 6(3): 293-300. |
25. | Marcoff L, Khalique OK, Kodali S, et al. TCT-105 Device-to-annulus pre-deployment angle by intraoperative transesophageal echocardiography predicts paravalvular regurgitation following transcatheter aortic valve replacement. J Am Coll Cardiol, 2013, 62(18): B34-B34. |
26. | Theron A, Pinto J, Grisoli D, et al. Patient-prosthesis mismatch in new generationtrans-catheter heart valves: a propensity scoreanalysis. Eur Heart J-Card Im, 2017, 19(2): 1-9. |
27. | Fanning J P, Platts DG, Walters DL, et al. Transcatheter aortic valve implantation (TAVI): valve design and evolution. Int J Cardiol, 2013, 168(3): 1822-1831. |
28. | Chang J, Liu RH, Zhong SP, et al. Effect of stent designs on the paravalvular regurgitationof transcatheter aortic valve implantation. Int J Comp Meth, 2019, 16(3): 1842007. |
29. | Pilgrim T, Lee JKT, O’Sullivan CJ, et al. Early versus newer generation devices for transcatheter aortic valve implantation in routine clinical practicea propensity score matched analysis. Open Heart, 2018, 5(1): 1-8. |
30. | Rogers T, Steinvil A, Buchanan K, et al. Contemporary transcatheter aortic valve replacement with third-generation balloon-expandable versus self-expanding devices. J Interv Cardiol, 2017, 30(4): 356-361. |
31. | Ben-Shoshan J, Konigstein M, Zahler D, et al. Comparison of the Edwards SAPIEN S3 versus Medtronic Evolut-R Devices for transcatheter aortic valve implantation. Am J Cardiol, 2016, 119(2): 302-307. |
32. | Gooley RP, Talman AH, Cameron JD, et al. Comparison of self-expanding and mechanically expanded transcatheter aortic valve prostheses. JACC Cardiovasc Interv, 2015, 8(7): 962-971. |
33. | Musa TA, Uddin A, Dobson LE, et al. Cardiovascular magnetic resonance assessment of 1st generation CoreValve and 2nd generation Lotus valves. J Interv Cardiol, 2017, 31(3): 391-399. |
34. | Asch FM, Vannan MA, Singh S, et al. Hemodynamic and echocardiographic comparison of the Lotus and CoreValve transcatheter aortic valves in patients with high and extreme surgical risk: an analysis from the REPRISE Ⅲ randomized controlled trial (repositionable percutaneous replacement of stenotic aortic valve through implantation of lotus valve system-randomized clinical evaluation). Circulation, 2018, 137(24): 2557-2567. |
35. | Blackman DJ, Meredith IT, Dumonteil N. Predictors of paravalvular regurgitation following implantation of the fully repositionable and retrievable Lotus transcatheter aortic valve (from the REPRISE II trial extended cohort). Am J Cardiol, 2017, 120(2): 292-299. |
36. | Perlman GY, Cheung A, Dumont E, et al. Transcatheter aortic valve replacement with the Portico valve: One-year results of the early Canadian experience. EuroIntervention, 2017, 12(13): 1653-1659. |
37. | Denegri A, Nietlispach F, Kottwitz J, et al. Real-world procedural and 30-day outcome using the Portico transcatheter aortic valve prosthesis: A large single center cohort. Int J Cardiol, 2018, 253: 40-44. |
38. | Taramasso M, Denegri A, Kuwata S, et al. Feasibility and safety of transfemoral sheathless portico aortic valve implantation preliminary results in a single center experience. Catheter Cardio Inter, 2017, 91(3): 533-539. |
39. | Mauri V, Deuschl F, Frohn T, et al. Predictors of paravalvular regurgitation and permanent pacemaker implantation after TAVR with a next-generation self-expanding device. Clin Res Cardiol, 2018, 107(19): 1-10. |
40. | 刘镕珲, 金昌, 冯文韬, 等. 不同钙化模式对经导管主动脉瓣膜植入效果影响的数值模拟研究. 医用生物力学, 2017, 32(6): 506-512. |
41. | Kim WK, Blumenstein J, Liebetrau C, et al. Comparison of outcomes using balloon-expandable versus self-expanding transcatheter prostheses according to the extent of aortic valve calcification. Clin Res Cardiol, 2017, 106(12): 995-1004. |
42. | Rodríguez-Olivares R, El FN, Rahhab Z, et al. Impact of device-host interaction on paravalvular aortic regurgitation with different transcatheter heart valves. Cardiovasc Revasc Med, 2019, 20(2): 126-132. |
43. | Oh JK, Little SH, Abdelmoneim SS, et al. Regression of paravalvular aortic regurgitation and remodeling of self-expanding transcatheter aortic valve. JACC Cardiovasc Imaging, 2015, 8(12): 1364-1375. |
44. | Rodríguez-Olivares R, Rahhab Z, Faquir NE, et al. Differences in frame geometry between balloon-expandable and self-expanding transcatheter heart valves and association with aortic regurgitation. Rev Esp Cardiol, 2016, 69(4): 392-400. |
45. | D’Ancona G, Dißmann M, Heinze H, et al. Transcatheter aortic valve replacement with the 34 mm Medtronic Evolut valve. Neth Heart J, 2018, 26(7-8): 401-408. |
46. | Tzamtzis S, Viquerat J, Yap J, et al. Numerical analysis of the radial force produced by the Medtronic-CoreValve and Edwards-SAPIEN after transcatheter aortic valve implantation (TAVI). Med Eng Phys, 2013, 35(1): 125-130. |
47. | Egron S, Fujita B, GullónL, et al. Radial Force: An underestimated parameter in oversizing transcatheter aortic valve replacement prostheses: in vitro analysis with five commercialized valves. Asaio J, 2018, 64(4): 536-543. |
48. | Chourdakis E, Koniari I, Kounis NG, et al. The role of echocardiography and CT angiography in transcatheter aortic valve implantation patients. J Geriatr Cardiol, 2018, 15(1): 86-94. |
49. | Willson AB, Webb JG, Freeman M, et al. Computed tomography-based sizing recommendations for transcatheter aortic valve replacement with balloon-expandable valves: Comparison with transesophageal echocardiography and rationale for implementation in a prospective trial. J Cardiovasc Comput, 2012, 6(6): 406-414. |
50. | Gareth C, Phillip JT, Jayme B. Quantitative assessment of paravalvular regurgitation following transcatheter aortic valve replacement. J Cardio Magn Reson, 2015, 17(32): 1-6. |
51. | Morganti S, Brambilla N, Petronio AS, et al. Prediction of patient-specific post-operative outcomes of TAVI procedure: The impact of the positioning strategy on valve performance. J Biomech, 2016, 49(12): 2513-2519. |
52. | Bianchi M, Marom G, Ghosh RP, et al. Patient-specific simulation of transcatheter aortic valve replacement: impact of deployment options on paravalvular leakage. Biomech Model Mechan, 2019, 18(2): 435-451. |
53. | Leber AW, Kasel M, Ischinger T, et al. , Aortic valve calcium score as a predictor for outcome after TAVI using the CoreValve revalving system. Int J Cardiol, 2013, 166(3): 652-657. |
54. | Ryś M, Hryniewiecki T, Michałowska I, et al. Quantitative estimation of aortic valve calcification in multislice computed tomography in predicting the development of paravalvular leaks following transcatheter aortic valve replacement. Adv Interv Cardiol, 2018, 14, 1(51): 85-89. |
55. | Khalique OK, Hahn RT, Gada H, et al. Quantity and location of aortic valve complex calcification predicts severity and location of paravalvular regurgitation and frequency of post-dilation after balloon-expandable transcatheter aortic valve replacement. JACC Cardiovasc Interv, 2014, 7(8): 885-894. |
56. | Sun W, Li K, Sirois E. Simulated elliptical bioprosthetic valve deformation: Implications for asymmetric transcatheter valve deployment. J Biomech, 2010, 43(16): 3085-3090. |
57. | Abramowitz Y, Maeno Y, Chakravarty T, et al. Aortic angulation attenuates procedural success following self-expandable but not balloon-expandable TAVR. JACC Cardiovasc Imaging, 2016, 9(8): 964-972. |
58. | Généreux P, Head JS, Hahn R, et al. Paravalvular leak after transcatheter aortic valve replacement: the new Achilles' heel? J Am Coll Cardiol, 2013, 61(11): 1125-1136. |
59. | Vy P, Auffret V, Badel P, et al. Review of patient-specific simulations of transcatheter aortic valve implantation. Int J Adv Eng Sci Appl Math, 2016, 8(1): 2-24. |
60. | Morganti S, Conti M, Aiello M, et al. Simulation of transcatheter aortic valve implantation through patient-specific finite element analysis: Two clinical cases. J Biomech, 2014, 47(11): 2547-2555. |
61. | De Jaegere P, De Santis G, Rodriguez-Olivares R, et al. Patient-specific computer modeling to predict aortic regurgitation after transcatheter aortic valve replacement. JACC Cardiovasc Interv, 2016, 9(5): 508-512. |
62. | Schultz C, Rodriguez-Olivares R, Bosmans J, et al. Patient-specific image-based computer simulation for theprediction of valve morphology and calcium displacement after TAVI with the Medtronic CoreValve and the Edwards SAPIEN valve. Eurointervention, 2016, 11(9): 1044-1052. |
63. | Ripley B, Kelil T, Cheezum MK, et al. 3D printing based on cardiac CT assists anatomic visualization prior to transcatheter aortic valve replacement. J Cardiovasc Comput, 2016, 10(1): 28-36. |
64. | Tanaka Y, Saito S, Sasuga S, et al. Quantitative assessment of paravalvular leakage after transcatheter aortic valve replacement using a patient-specific pulsatile flow model. Int J Cardiol, 2018, 258: 313-320. |
- 1. Cribier A, Eltchaninoff H, Bash A, et al. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation, 2002, 106(24): 3006-3008.
- 2. Leon MB, Smith CR, Mack M, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med, 2010, 363(17): 1597-1607.
- 3. Smith CR, Leon MB, Mack MJ, et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med, 2011, 364(23): 2187-2198.
- 4. Gotzmann M, Lindstaedt M, Mügge A. From pressure overload to volume overload: Aortic regurgitation after transcatheter aortic valve implantation. Am Heart J, 2012, 163(6): 903-911.
- 5. Athappan G, Patvardhan E, Tuzcu M, et al. Incidence, predictors, and outcomes of aortic regurgitation after transcatheter aortic valve replacement. J Am Coll Cardiol, 2013, 61(15): 1585-1595.
- 6. Vasa-Nicotera M, Sinning JM, Chin D, et al. Impact of paravalvular leakage on outcome in patients after transcatheter aortic valve implantation. JACC Cardiovasc Interv, 2012, 5(8): 858-865.
- 7. Toggweiler S, Humphries KH, Lee M, et al. 5-year outcome after transcatheter aortic valve implantation. J Am Coll Cardiol, 2013, 61(4): 413-419.
- 8. Colli A, Besola L, Salizzoni S, et al. Does pre-existing aortic regurgitation protect from death in patients who develop paravalvular leak after TAVI? Int J Cardiol, 2017, 233: 52-60.
- 9. Yang TH, Webb JG, Blanke P, et al. Incidence and severity of paravalvular aortic regurgitation with multidetector computed tomography nominal area oversizing or undersizing after transcatheter heart valve replacement with the Sapien 3: a comparison with the Sapien XT. JACC Cardiovasc Interv, 2015, 8(3): 462-471.
- 10. Binder RK, Stortecky S, Heg D, et al. Procedural results and clinical outcomes of transcatheter aortic valve implantation in Switzerland: an observational cohort study of Sapien 3 versus Sapien XT transcatheter heart valves. Circ Cardiovasc Interv, 2015, 8(10): e002653.
- 11. Enríquez-Rodríguez E, Amat-Santos IJ, Jiménez-Quevedo P, et al. Comparison of the hemodynamic performance of the balloon-expandable SAPIEN 3 versus self-expandable Evolut R transcatheter valve: a case-matched study. Rev Esp Cardiol, 2018, 71(9): 735-742.
- 12. Kong WK, Van Rosendael PJ, Frank VDK, et al. Impact of different iterations of devices and degree of aortic valve calcium on paravalvular regurgitation after transcatheter aortic valve implantation. Am J Cardiol, 2016, 118(4): 567-571.
- 13. Ando T, Briasoulis A, Holmes AA, et al. Sapien 3 versus Sapien XT prosthetic valves in transcatheter aortic valve implantation: A meta-analysis. Int J Cardiol, 2016, 220: 472-478.
- 14. Pibarot P, Hahn RT, Weissman NJ, et al. Association of paravalvular regurgitation with 1-year outcomes after transcatheter aortic valve replacement with the SAPIEN 3 valve. JAMA Cardiol, 2017, 2(11): 1208-1216.
- 15. Blanke P, Pibarot P, Hahn R, et al. Computed tomography–based oversizing degrees and incidence of paravalvular regurgitation of a new generation transcatheter heart valve. JACC Cardiovasc Interv, 2017, 10(8): 810-820.
- 16. Tummala R, Banerjee K, Mick S, et al. Clinical and procedural outcomes with the SAPIEN 3 versus the SAPIEN XT prosthetic valves in transcatheter aortic valve replacement: a systematic review and meta-analysis. Catheter Cardio Inter, 2018, 92(3): e149-158.
- 17. Schulz E, Jabs A, Gori T, et al. Transcatheter aortic valve implantation with the new-generation Evolut RTM: comparison with CoreValve® in a single center cohort. Int J Cardiol Heart Vasc, 2016, 12: 52-56.
- 18. Gomes B, Geis NA, Chorianopoulos E, et al. Improvements of procedural results with a new-generation self-expanding transfemoral aortic valve prosthesis in comparison to the old-generation device. J Inter Cardiol, 2017, 30(1): 72-78.
- 19. Noble S, Stortecky S, Heg D, et al. Comparison of procedural and clinical outcomes with Evolut R versus Medtronic CoreValve: a Swiss TAVI registry analysis. EuroIntervention, 2017, 12(18): e2170-e2176.
- 20. Giannini C, Carlo MD, Tamburino C, et al. Transcathether aortic valve implantation with the new repositionable self-expandable Evolut R versus CoreValve system: A case-matched comparison. Int J Cardiol, 2017, 243: 126-131.
- 21. Todaro D, Barbanti M, Picci A, et al. Early and mid-term outcomes of transcatheter aortic valve replacement using the new generation self-expanding Corevalve Evolut R Device. Structural Heart, 2018, 2(3): 229-234.
- 22. Kowalewski M, Gozdek M, Raffa GM, et al. Transcathether aortic valve implantation with the new repositionable self-expandable Medtronic Evolut R vs. CoreValve system: evidence on the benefit of a meta-analytical approach. J Cardiovasc M, 2019, 20(4): 226-236.
- 23. Barbanti M, Webb J, Gilard M, et al. Transcatheter aortic valve implantation in 2017: state of the art. Eurointervention, 2017, 13(AA): AA11-AA21.
- 24. Binder RK, RodésCabau J, Wood DA, et al. Transcatheter aortic valve replacement with the SAPIEN 3: a new balloon-expandable transcatheter heart valve. JACC Cardiovasc Interv, 2013, 6(3): 293-300.
- 25. Marcoff L, Khalique OK, Kodali S, et al. TCT-105 Device-to-annulus pre-deployment angle by intraoperative transesophageal echocardiography predicts paravalvular regurgitation following transcatheter aortic valve replacement. J Am Coll Cardiol, 2013, 62(18): B34-B34.
- 26. Theron A, Pinto J, Grisoli D, et al. Patient-prosthesis mismatch in new generationtrans-catheter heart valves: a propensity scoreanalysis. Eur Heart J-Card Im, 2017, 19(2): 1-9.
- 27. Fanning J P, Platts DG, Walters DL, et al. Transcatheter aortic valve implantation (TAVI): valve design and evolution. Int J Cardiol, 2013, 168(3): 1822-1831.
- 28. Chang J, Liu RH, Zhong SP, et al. Effect of stent designs on the paravalvular regurgitationof transcatheter aortic valve implantation. Int J Comp Meth, 2019, 16(3): 1842007.
- 29. Pilgrim T, Lee JKT, O’Sullivan CJ, et al. Early versus newer generation devices for transcatheter aortic valve implantation in routine clinical practicea propensity score matched analysis. Open Heart, 2018, 5(1): 1-8.
- 30. Rogers T, Steinvil A, Buchanan K, et al. Contemporary transcatheter aortic valve replacement with third-generation balloon-expandable versus self-expanding devices. J Interv Cardiol, 2017, 30(4): 356-361.
- 31. Ben-Shoshan J, Konigstein M, Zahler D, et al. Comparison of the Edwards SAPIEN S3 versus Medtronic Evolut-R Devices for transcatheter aortic valve implantation. Am J Cardiol, 2016, 119(2): 302-307.
- 32. Gooley RP, Talman AH, Cameron JD, et al. Comparison of self-expanding and mechanically expanded transcatheter aortic valve prostheses. JACC Cardiovasc Interv, 2015, 8(7): 962-971.
- 33. Musa TA, Uddin A, Dobson LE, et al. Cardiovascular magnetic resonance assessment of 1st generation CoreValve and 2nd generation Lotus valves. J Interv Cardiol, 2017, 31(3): 391-399.
- 34. Asch FM, Vannan MA, Singh S, et al. Hemodynamic and echocardiographic comparison of the Lotus and CoreValve transcatheter aortic valves in patients with high and extreme surgical risk: an analysis from the REPRISE Ⅲ randomized controlled trial (repositionable percutaneous replacement of stenotic aortic valve through implantation of lotus valve system-randomized clinical evaluation). Circulation, 2018, 137(24): 2557-2567.
- 35. Blackman DJ, Meredith IT, Dumonteil N. Predictors of paravalvular regurgitation following implantation of the fully repositionable and retrievable Lotus transcatheter aortic valve (from the REPRISE II trial extended cohort). Am J Cardiol, 2017, 120(2): 292-299.
- 36. Perlman GY, Cheung A, Dumont E, et al. Transcatheter aortic valve replacement with the Portico valve: One-year results of the early Canadian experience. EuroIntervention, 2017, 12(13): 1653-1659.
- 37. Denegri A, Nietlispach F, Kottwitz J, et al. Real-world procedural and 30-day outcome using the Portico transcatheter aortic valve prosthesis: A large single center cohort. Int J Cardiol, 2018, 253: 40-44.
- 38. Taramasso M, Denegri A, Kuwata S, et al. Feasibility and safety of transfemoral sheathless portico aortic valve implantation preliminary results in a single center experience. Catheter Cardio Inter, 2017, 91(3): 533-539.
- 39. Mauri V, Deuschl F, Frohn T, et al. Predictors of paravalvular regurgitation and permanent pacemaker implantation after TAVR with a next-generation self-expanding device. Clin Res Cardiol, 2018, 107(19): 1-10.
- 40. 刘镕珲, 金昌, 冯文韬, 等. 不同钙化模式对经导管主动脉瓣膜植入效果影响的数值模拟研究. 医用生物力学, 2017, 32(6): 506-512.
- 41. Kim WK, Blumenstein J, Liebetrau C, et al. Comparison of outcomes using balloon-expandable versus self-expanding transcatheter prostheses according to the extent of aortic valve calcification. Clin Res Cardiol, 2017, 106(12): 995-1004.
- 42. Rodríguez-Olivares R, El FN, Rahhab Z, et al. Impact of device-host interaction on paravalvular aortic regurgitation with different transcatheter heart valves. Cardiovasc Revasc Med, 2019, 20(2): 126-132.
- 43. Oh JK, Little SH, Abdelmoneim SS, et al. Regression of paravalvular aortic regurgitation and remodeling of self-expanding transcatheter aortic valve. JACC Cardiovasc Imaging, 2015, 8(12): 1364-1375.
- 44. Rodríguez-Olivares R, Rahhab Z, Faquir NE, et al. Differences in frame geometry between balloon-expandable and self-expanding transcatheter heart valves and association with aortic regurgitation. Rev Esp Cardiol, 2016, 69(4): 392-400.
- 45. D’Ancona G, Dißmann M, Heinze H, et al. Transcatheter aortic valve replacement with the 34 mm Medtronic Evolut valve. Neth Heart J, 2018, 26(7-8): 401-408.
- 46. Tzamtzis S, Viquerat J, Yap J, et al. Numerical analysis of the radial force produced by the Medtronic-CoreValve and Edwards-SAPIEN after transcatheter aortic valve implantation (TAVI). Med Eng Phys, 2013, 35(1): 125-130.
- 47. Egron S, Fujita B, GullónL, et al. Radial Force: An underestimated parameter in oversizing transcatheter aortic valve replacement prostheses: in vitro analysis with five commercialized valves. Asaio J, 2018, 64(4): 536-543.
- 48. Chourdakis E, Koniari I, Kounis NG, et al. The role of echocardiography and CT angiography in transcatheter aortic valve implantation patients. J Geriatr Cardiol, 2018, 15(1): 86-94.
- 49. Willson AB, Webb JG, Freeman M, et al. Computed tomography-based sizing recommendations for transcatheter aortic valve replacement with balloon-expandable valves: Comparison with transesophageal echocardiography and rationale for implementation in a prospective trial. J Cardiovasc Comput, 2012, 6(6): 406-414.
- 50. Gareth C, Phillip JT, Jayme B. Quantitative assessment of paravalvular regurgitation following transcatheter aortic valve replacement. J Cardio Magn Reson, 2015, 17(32): 1-6.
- 51. Morganti S, Brambilla N, Petronio AS, et al. Prediction of patient-specific post-operative outcomes of TAVI procedure: The impact of the positioning strategy on valve performance. J Biomech, 2016, 49(12): 2513-2519.
- 52. Bianchi M, Marom G, Ghosh RP, et al. Patient-specific simulation of transcatheter aortic valve replacement: impact of deployment options on paravalvular leakage. Biomech Model Mechan, 2019, 18(2): 435-451.
- 53. Leber AW, Kasel M, Ischinger T, et al. , Aortic valve calcium score as a predictor for outcome after TAVI using the CoreValve revalving system. Int J Cardiol, 2013, 166(3): 652-657.
- 54. Ryś M, Hryniewiecki T, Michałowska I, et al. Quantitative estimation of aortic valve calcification in multislice computed tomography in predicting the development of paravalvular leaks following transcatheter aortic valve replacement. Adv Interv Cardiol, 2018, 14, 1(51): 85-89.
- 55. Khalique OK, Hahn RT, Gada H, et al. Quantity and location of aortic valve complex calcification predicts severity and location of paravalvular regurgitation and frequency of post-dilation after balloon-expandable transcatheter aortic valve replacement. JACC Cardiovasc Interv, 2014, 7(8): 885-894.
- 56. Sun W, Li K, Sirois E. Simulated elliptical bioprosthetic valve deformation: Implications for asymmetric transcatheter valve deployment. J Biomech, 2010, 43(16): 3085-3090.
- 57. Abramowitz Y, Maeno Y, Chakravarty T, et al. Aortic angulation attenuates procedural success following self-expandable but not balloon-expandable TAVR. JACC Cardiovasc Imaging, 2016, 9(8): 964-972.
- 58. Généreux P, Head JS, Hahn R, et al. Paravalvular leak after transcatheter aortic valve replacement: the new Achilles' heel? J Am Coll Cardiol, 2013, 61(11): 1125-1136.
- 59. Vy P, Auffret V, Badel P, et al. Review of patient-specific simulations of transcatheter aortic valve implantation. Int J Adv Eng Sci Appl Math, 2016, 8(1): 2-24.
- 60. Morganti S, Conti M, Aiello M, et al. Simulation of transcatheter aortic valve implantation through patient-specific finite element analysis: Two clinical cases. J Biomech, 2014, 47(11): 2547-2555.
- 61. De Jaegere P, De Santis G, Rodriguez-Olivares R, et al. Patient-specific computer modeling to predict aortic regurgitation after transcatheter aortic valve replacement. JACC Cardiovasc Interv, 2016, 9(5): 508-512.
- 62. Schultz C, Rodriguez-Olivares R, Bosmans J, et al. Patient-specific image-based computer simulation for theprediction of valve morphology and calcium displacement after TAVI with the Medtronic CoreValve and the Edwards SAPIEN valve. Eurointervention, 2016, 11(9): 1044-1052.
- 63. Ripley B, Kelil T, Cheezum MK, et al. 3D printing based on cardiac CT assists anatomic visualization prior to transcatheter aortic valve replacement. J Cardiovasc Comput, 2016, 10(1): 28-36.
- 64. Tanaka Y, Saito S, Sasuga S, et al. Quantitative assessment of paravalvular leakage after transcatheter aortic valve replacement using a patient-specific pulsatile flow model. Int J Cardiol, 2018, 258: 313-320.