1. |
Ettinger DS, Wood DE, Aggarwal C, <italic>et al</italic>. NCCN guidelines insights: non-small cell lung vancer, version 1.2020. J Natl Compr Canc Netw, 2019, 17(12): 1464-1472.
|
2. |
Shimizu K, Nagashima T, Ohtaki Y, <italic>et al</italic>. Analysis of the variation pattern in right upper pulmonary veins and establishment of simplified vein models for anatomical segmentectomy. Gen Thorac Cardiovasc Surg, 2016, 64(10): 604-611.
|
3. |
Sato M, Murayama T, Nakajima J. Techniques of stapler-based navigational thoracoscopic segmentectomy using virtual assisted lung mapping (VAL-MAP). J Thorac Dis, 2016, 8(Suppl 9): S716-S730.
|
4. |
Okada M, Mimura T, Ikegaki J, <italic>et al</italic>. A novel video-assisted anatomic segmentectomy technique: selective segmental inflation via bronchofiberoptic jet followed by cautery cutting. J Thorac Cardiovasc Surg, 2007, 133(3): 753-758.
|
5. |
Andolfi M, Potenza R, Seguin-Givelet A, <italic>et al</italic>. Identification of the intersegmental plane during thoracoscopic segmentectomy: state of the art. Interact Cardiovasc Thorac Surg, 2020, 30(3): 329-336.
|
6. |
Misaki N, Chang SS, Gotoh M, <italic>et al</italic>. A novel method for determining adjacent lung segments with infrared thoracoscopy. J Thorac Cardiovasc Surg, 2009, 138(3): 613-618.
|
7. |
Iizuka S, Kuroda H, Yoshimura K, <italic>et al</italic>. Predictors of indocyanine green visualization during fluorescence imaging for segmental plane formation in thoracoscopic anatomical segmentectomy. J Thorac Dis, 2016, 8(5): 985-991.
|
8. |
Oh S, Suzuki K, Miyasaka Y, <italic>et al</italic>. New technique for lung segmentectomy using indocyanine green injection. Ann Thorac Surg, 2013, 95(6): 2188-2190.
|
9. |
Wu WB, Xia Y, Pan XL, <italic>et al</italic>. Three-dimensional navigation-guided thoracoscopic combined subsegmentectomy for intersegmental pulmonary nodules. Thorac Cancer, 2019, 10(1): 41-46.
|
10. |
Sato M, Kuwata T, Yamanashi K, <italic>et al</italic>. Safety and reproducibility of virtual-assisted lung mapping: a multicentre study in Japan. Eur J Cardiothorac Surg, 2017, 51(5): 861-868.
|
11. |
Ueda K, Uemura Y, Sato M. Protocol for the VAL-MAP 2.0 trial: a multicentre, single-arm, phase Ⅲ trial to evaluate the effectiveness of virtual-assisted lung mapping by bronchoscopic dye injection and microcoil implementation in patients with small pulmonary nodules in Japan. BMJ Open, 2019, 9(9): e028018.
|
12. |
Nakazawa S, Shimizu K, Mogi A, <italic>et al</italic>. VATS segmentectomy: past, present, and future. Gen Thorac Cardiovasc Surg, 2018, 66(2): 81-90.
|
13. |
Shimizu K, Nakazawa S, Nagashima T, <italic>et al</italic>. 3D-CT anatomy for VATS segmentectomy. J Vis Surg, 2017, 3: 88.
|
14. |
Asakura K, Izumi Y, Kohno M, <italic>et al</italic>. Effect of cutting technique at the intersegmental plane during segmentectomy on expansion of the preserved segment: comparison between staplers and scissors in ex vivo pig lung. Eur J Cardiothorac Surg, 2011, 40(1): e34-e38.
|
15. |
Liu H, Lin G, Zhang S, <italic>et al</italic>. Electrocautery versus stapler for intersegmental plane dissection in complete thoracoscopic segmentectomy. Zhongguo Fei Ai Za Zhi, 2017, 20(1): 41-46.
|
16. |
Ginsberg RJ, Rubinstein LV. Randomized trial of lobectomy versus limited resection for T1 N0 non-small cell lung cancer. Lung Cancer Study Group. Ann Thorac Surg, 1995, 60(3): 615-622.
|
17. |
Wolf AS, Richards WG, Jaklitsch MT, <italic>et al</italic>. Lobectomy versus sublobar resection for small (2 cm or less) non-small cell lung cancers. Ann Thorac Surg, 2011, 92(5): 1819-1823.
|
18. |
Martin-Ucar AE, Nakas A, Pilling JE, <italic>et al</italic>. A case-matched study of anatomical segmentectomy versus lobectomy for stage Ⅰ lung cancer in high-risk patients. Eur J Cardiothorac Surg, 2005, 27(4): 675-679.
|
19. |
Detterbeck FC, Boffa DJ, Kim AW, <italic>et al</italic>. The eighth edition lung cancer stage classification. Chest, 2017, 151(1): 193-203.
|
20. |
Yamashita S, Tokuishi K, Anami K, <italic>et al</italic>. Thoracoscopic segmentectomy for T1 classification of non-small cell lung cancer: a single center experience. Eur J Cardiothorac Surg, 2012, 42(1): 83-88.
|
21. |
Zhong C, Fang W, Mao T, <italic>et al</italic>. Comparison of thoracoscopic segmentectomy and thoracoscopic lobectomy for small-sized stage ⅠA lung cancer. Ann Thorac Surg, 2012, 94(2): 362-367.
|
22. |
Sugi K, Kobayashi S, Sudou M, <italic>et al</italic>. Long-term prognosis of video-assisted limited surgery for early lung cancer. Eur J Cardiothorac Surg, 2010, 37(2): 456-460.
|
23. |
Cao C, Chandrakumar D, Gupta S, <italic>et al</italic>. Could less be more?-A systematic review and meta-analysis of sublobar resections versus lobectomy for non-small cell lung cancer according to patient selection. Lung Cancer, 2015, 89(2): 121-132.
|
24. |
Mun M, Kohno T. Efficacy of thoracoscopic resection for multifocal bronchioloalveolar carcinoma showing pure ground-glass opacities of 20 mm or less in diameter. J Thorac Cardiovasc Surg, 2007, 134(4): 877-882.
|
25. |
Tsutani Y, Miyata Y, Nakayama H, <italic>et al</italic>. Appropriate sublobar resection choice for ground glass opacity-dominant clinical stage ⅠA lung adenocarcinoma: wedge resection or segmentectomy. Chest, 2014, 145(1): 66-71.
|
26. |
Sagawa M, Oizumi H, Suzuki H, <italic>et al</italic>. A prospective 5-year follow-up study after limited resection for lung cancer with ground-glass opacity. Eur J Cardiothorac Surg, 2018, 53(4): 849-856.
|
27. |
Watanabe A, Ohori S, Nakashima S, <italic>et al</italic>. Feasibility of video-assisted thoracoscopic surgery segmentectomy for selected peripheral lung carcinomas. Eur J Cardiothorac Surg, 2009, 35(5): 775-780.
|
28. |
Gu Z, Wang H, Mao T, <italic>et al</italic>. Pulmonary function changes after different extent of pulmonary resection under video-assisted thoracic surgery. J Thorac Dis, 2018, 10(4): 2331-2337.
|
29. |
Harada H, Okada M, Sakamoto T, <italic>et al</italic>. Functional advantage after radical segmentectomy versus lobectomy for lung cancer. Ann Thorac Surg, 2005, 80(6): 2041-2045.
|
30. |
Shao C, Zheng C, Yan W, <italic>et al</italic>. Evaluation of efficacy and safety of minimally invasive segmentectomy in the treatment of lung cancer. Oncol Lett, 2018, 15(6): 9516-9522.
|
31. |
Echavarria MF, Cheng AM, Velez-Cubian FO, <italic>et al</italic>. Comparison of pulmonary function tests and perioperative outcomes after robotic-assisted pulmonary lobectomy vs segmentectomy. Am J Surg, 2016, 212(6): 1175-1182.
|
32. |
Bédat B, Abdelnour-Berchtold E, Perneger T, <italic>et al</italic>. Comparison of postoperative complications between segmentectomy and lobectomy by video-assisted thoracic surgery: a multicenter study. J Cardiothorac Surg, 2019, 14(1): 189.
|
33. |
Smith CB, Kale M, Mhango G, <italic>et al</italic>. Comparative outcomes of elderly stage Ⅰ lung cancer patients treated with segmentectomy via video-assisted thoracoscopic surgery versus open resection. J Thorac Oncol, 2014, 9(3): 383-389.
|
34. |
Ghaly G, Kamel M, Nasar A, <italic>et al</italic>. Video-assisted thoracoscopic surgery is a safe and effective alternative to thoracotomy for anatomical segmentectomy in patients with clinical stageⅠ non-small cell lung cancer. Ann Thorac Surg, 2016, 101(2): 465-472.
|
35. |
Schuchert MJ, Pettiford BL, Pennathur A, <italic>et al</italic>. Anatomic segmentectomy for stageⅠ non-small-cell lung cancer: comparison of video-assisted thoracic surgery versus open approach. J Thorac Cardiovasc Surg, 2009, 138(6): 1318-1325.
|
36. |
Witte B, Stenz C, Vahl CF, <italic>et al</italic>. Comparative intention-to-treat analysis of the video-assisted thoracoscopic surgery approach to pulmonary segmentectomy for lung carcinoma. Interact Cardiovasc Thorac Surg, 2015, 21(3): 276-283.
|
37. |
Le Gac C, Gondé H, Gillibert A, <italic>et al</italic>. Medico-economic impact of robot-assisted lung segmentectomy: what is the cost of the learning curve? Interact Cardiovasc Thorac Surg, 2020, 30(2): 255-262.
|
38. |
Kent M, Wang T, Whyte R, <italic>et al</italic>. Open, video-assisted thoracic surgery, and robotic lobectomy: review of a national database. Ann Thorac Surg, 2014, 97(1): 236-242.
|
39. |
She XW, Gu YB, Xu C, <italic>et al</italic>. Three-dimensional (3D)-computed tomography bronchography and angiography combined with 3D-video-assisted thoracic surgery (VATS) versus conventional 2D-VATS anatomic pulmonary segmentectomy for the treatment of non-small cell lung cancer. Thorac Cancer, 2018, 9(2): 305-309.
|
40. |
Kuroda H, Yoshida T, Arimura T, <italic>et al</italic>. Novel development of Spectra-A using indocyanine green for segmental boundary visibility in thoracoscopic segmentectomy. J Surg Res, 2018, 227: 228-233.
|
41. |
Kuwata T, Shinohara S, Matsumiya H, <italic>et al</italic>. Virtual-assisted lung mapping (VAL-MAP) shortened surgical time of wedge resection. J Thorac Dis, 2018, 10(3): 1842-1849.
|
42. |
Aokage K, Saji H, Suzuki K, <italic>et al</italic>. A non-randomized confirmatory trial of segmentectomy for clinical T1N0 lung cancer with dominant ground glass opacity based on thin-section computed tomography (JCOG1211). Gen Thorac Cardiovasc Surg, 2017, 65(5): 267-272.
|