1. |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018, 68(6): 394-424.
|
2. |
Pennathur A, Gibson MK, Jobe BA, et al. Oesophageal carcinoma. Lancet, 2013, 381(9864): 400-412.
|
3. |
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin, 2016, 66(2): 115-132.
|
4. |
Chen W, Zheng R, Zeng H, et al. The incidence and mortality of major cancers in China, 2012. Chin J Cancer, 2016, 35(1): 73.
|
5. |
D’Journo XB, Thomas PA. Current management of esophageal cancer. J Thorac Dis, 2014, 6 Suppl 2(Suppl 2): S253-S264.
|
6. |
Shah MA, Kennedy EB, Catenacci DV, et al. Treatment of locally advanced esophageal carcinoma: ASCO guideline. J Clin Oncol, 2020, 38(23): 2677-2694.
|
7. |
Jain S, Dhingra S. Pathology of esophageal cancer and Barrett’s esophagus. Ann Cardiothorac Surg, 2017, 6(2): 99-109.
|
8. |
Engel LS, Chow WH, Vaughan TL, et al. Population attributable risks of esophageal and gastric cancers. J Natl Cancer Inst, 2003, 95(18): 1404-1413.
|
9. |
Chau I, Norman AR, Cunningham D, et al. Multivariate prognostic factor analysis in locally advanced and metastatic esophago-gastric cancer-pooled analysis from three multicenter, randomized, controlled trials using individual patient data. J Clin Oncol, 2004, 22(12): 2395-2403.
|
10. |
Gavin AT, Francisci S, Foschi R, et al. Oesophageal cancer survival in Europe: A EUROCARE-4 study. Cancer Epidemiol, 2012, 36(6): 505-512.
|
11. |
Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell, 2011, 144(5): 646-674.
|
12. |
Fatehi Hassanabad A, Chehade R, Breadner D, et al. Esophageal carcinoma: Towards targeted therapies. Cell Oncol (Dordr), 2020, 43(2): 195-209.
|
13. |
Barsouk A, Rawla P, Hadjinicolaou AV, et al. Targeted therapies and immunotherapies in the treatment of esophageal cancers. Med Sci (Basel), 2019, 7(10): 100.
|
14. |
Roychowdhury S, Chinnaiyan AM. Translating cancer genomes and transcriptomes for precision oncology. CA Cancer J Clin, 2016, 66(1): 75-88.
|
15. |
Yan Y, Phan L, Yang F, et al. A novel mechanism of alternative promoter and splicing regulates the epitope generation of tumor antigen CML66-L. J Immunol, 2004, 172(1): 651-660.
|
16. |
Han B, Zhang YY, Xu K, et al. NUDCD1 promotes metastasis through inducing EMT and inhibiting apoptosis in colorectal cancer. Am J Cancer Res, 2018, 8(5): 810-823.
|
17. |
Rao W, Li H, Song F, et al. OVA66 increases cell growth, invasion and survival via regulation of IGF-1R-MAPK signaling in human cancer cells. Carcinogenesis, 2014, 35(7): 1573-1581.
|
18. |
Boyault S, Rickman DS, de Reyniès A, et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology, 2007, 45(1): 42-52.
|
19. |
Holzer K, Ori A, Cooke A, et al. Nucleoporin Nup155 is part of the p53 network in liver cancer. Nat Commun, 2019, 10(1): 2147.
|
20. |
He W, Chen L, Yuan K, et al. Gene set enrichment analysis and meta-analysis to identify six key genes regulating and controlling the prognosis of esophageal squamous cell carcinoma. J Thorac Dis, 2018, 10(10): 5714-5726.
|
21. |
Watson NF, Ramage JM, Madjd Z, et al. Immunosurveillance is active in colorectal cancer as downregulation but not complete loss of MHC classⅠexpression correlates with a poor prognosis. Int J Cancer, 2006, 118(1): 6-10.
|
22. |
Umemoto Y, Okano S, Matsumoto Y, et al. Prognostic impact of programmed cell death 1 ligand 1 expression in human leukocyte antigen classⅠ-positive hepatocellular carcinoma after curative hepatectomy. J Gastroenterol, 2015, 50(1): 65-75.
|
23. |
Mizukami Y, Kono K, Maruyama T, et al. Downregulation of HLA classⅠmolecules in the tumour is associated with a poor prognosis in patients with oesophageal squamous cell carcinoma. Br J Cancer, 2008, 99(9): 1462-1467.
|
24. |
Ljunggren HG, Kärre K. In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today, 1990, 11(7): 237-244.
|
25. |
Ueda Y, Ishikawa K, Shiraishi N, et al. Clinical significance of HLA classⅠheavy chain expression in patients with gastric cancer. J Surg Oncol, 2008, 97(5): 451-455.
|
26. |
Zhang X, Lin A, Zhang JG, et al. Alteration of HLA-F and HLAⅠ antigen expression in the tumor is associated with survival in patients with esophageal squamous cell carcinoma. Int J Cancer, 2013, 132(1): 82-89.
|
27. |
Ito S, Okano S, Morita M, et al. Expression of PD-L1 and HLA classⅠin esophageal squamous cell carcinoma: Prognostic factors for patient outcome. Ann Surg Oncol, 2016, 23(Suppl 4): 508-515.
|
28. |
Jiang YZ, Li QH, Zhao JQ, et al. Identification of a novel fusion gene (HLA-E and HLA-B) by RNA-seq analysis in esophageal squamous cell carcinoma. Asian Pac J Cancer Prev, 2014, 15(5): 2309-2312.
|
29. |
Lee HN, Ahn SM, Jang HH. Cold-inducible RNA-binding protein, CIRP, inhibits DNA damage-induced apoptosis by regulating p53. Biochem Biophys Res Commun, 2015, 464(3): 916-921.
|
30. |
Yang R, Weber DJ, Carrier F. Post-transcriptional regulation of thioredoxin by the stress inducible heterogenous ribonucleoprotein A18. Nucleic Acids Res, 2006, 34(4): 1224-1236.
|
31. |
Biade S, Marinucci M, Schick J, et al. Gene expression profiling of human ovarian tumours. Br J Cancer, 2006, 95(8): 1092-1100.
|
32. |
Guo X, Wu Y, Hartley RS. Cold-inducible RNA-binding protein contributes to human antigen R and cyclin E1 deregulation in breast cancer. Mol Carcinog, 2010, 49(2): 130-140.
|
33. |
Chang ET, Parekh PR, Yang Q, et al. Heterogenous ribonucleoprotein A18 (hnRNP A18) promotes tumor growth by increasing protein translation of selected transcripts in cancer cells. Oncotarget, 2016, 7(9): 10578-10593.
|
34. |
Lujan DA, Ochoa JL, Hartley RS. Cold-inducible RNA binding protein in cancer and inflammation. Wiley Interdiscip Rev RNA, 2018, 9(2): 10.1002/wrna. 1462.
|
35. |
Lee HN, Ahn SM, Jang HH. Cold-inducible RNA-binding protein promotes epithelial-mesenchymal transition by activating ERK and p38 pathways. Biochem Biophys Res Commun, 2016, 477(4): 1038-1044.
|
36. |
Chang MH, Plata C, Zandi-Nejad K, et al. Slc26a9-anion exchanger, channel and Na+ transporter. J Membr Biol, 2009, 228(3): 125-140.
|
37. |
Dorwart MR, Shcheynikov N, Wang Y, et al. SLC26A9 is a Cl(-) channel regulated by the WNK kinases. J Physiol, 2007, 584(Pt 1): 333-345.
|
38. |
Gorbatenko A, Olesen CW, Boedtkjer E, et al. Regulation and roles of bicarbonate transporters in cancer. Front Physiol, 2014, 5: 130.
|
39. |
Seifert M, Reichrath J. The role of the human DNA mismatch repair gene hMSH2 in DNA repair, cell cycle control and apoptosis: implications for pathogenesis, progression and therapy of cancer. J Mol Histol, 2006, 37(5-7): 301-307.
|
40. |
Lynch PM. The hMSH2 and hMLH1 genes in hereditary nonpolyposis colorectal cancer. Surg Oncol Clin N Am, 2009, 18(4): 611-624.
|
41. |
Falkenback D, Johansson J, Halvarsson B, et al. Defective mismatch-repair as a minor tumorigenic pathway in Barrett esophagus-associated adenocarcinoma. Cancer Genet Cytogenet, 2005, 157(1): 82-86.
|
42. |
Evans SC, Gillis A, Geldenhuys L, et al. Microsatellite instability in esophageal adenocarcinoma. Cancer Lett, 2004, 212(2): 241-251.
|
43. |
Xie W, Zhang J, Zhong P, et al. Expression and potential prognostic value of histone family gene signature in breast cancer. Exp Ther Med, 2019, 18(6): 4893-4903.
|
44. |
Hassan M, Alaoui A, Feyen O, et al. The BH3-only member Noxa causes apoptosis in melanoma cells by multiple pathways. Oncogene, 2008, 27(33): 4557-4568.
|
45. |
Liu YL, Lai F, Wilmott JS, et al. Noxa upregulation by oncogenic activation of MEK/ERK through CREB promotes autophagy in human melanoma cells. Oncotarget, 2014, 5(22): 11237-11251.
|
46. |
Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov, 2013, 12(11): 847-865.
|