1. |
Anayama T, Hirohashi K, Miyazaki R, et al. Near-infrared dye marking for thoracoscopic resection of small-sized pulmonary nodules: comparison of percutaneous and bronchoscopic injection techniques. J Cardiothorac Surg, 2018, 13(1): 5.
|
2. |
Keating J, Singhal S. Novel methods of intraoperative localization and margin assessment of pulmonary nodules. Semin Thorac Cardiovasc Surg, 2016, 28(1): 127-136.
|
3. |
Ujiie H, Kato T, Hu HP, et al. A novel minimally invasive near-infrared thoracoscopic localization technique of small pulmonary nodules: A phase Ⅰ feasibility trial. J Thorac Cardiovasc Surg, 2017, 154(2): 702-711.
|
4. |
Pupovac SS, Chaudhry A, Singh VA. Benefits of electromagnetic navigational bronchoscopy for identifying pulmonary nodules for robotic resections. Innovations (Phila), 2017, 12(6): 418-420.
|
5. |
Lam S, Kennedy T, Unger M, et al. Localization of bronchial intraepithelial neoplastic lesions by fluorescence bronchoscopy. Chest, 1998, 113(3): 696-702.
|
6. |
Thiberville L, Moreno-Swirc S, Vercauteren T, et al. In vivo imaging of the bronchial wall microstructure using fibered confocal fluorescence microscopy. Am J Respir Crit Care Med, 2007, 175(1): 22-31.
|
7. |
Lam S, Standish B, Baldwin C, et al. In vivo optical coherence tomography imaging of preinvasive bronchial lesions. Clin Cancer Res, 2008, 14(7): 2006-2011.
|
8. |
Li Y, Li X, Sui XZ, et al. Comparison of the autofluorescence bronchoscope and the white light bronchoscope in airway examination. Chin J Cancer, 2010, 29(12): 1018-1022.
|
9. |
Short MA, Lam S, Mcwilliams AM, et al. Using laser Raman spectroscopy to reduce false positives of autofluorescence bronchoscopies: A pilot study. J Thorac Oncol, 2011, 6(7): 1206-1214.
|
10. |
Shahriari N, Heerink W, Van Katwijk T, et al. Computed tomography (CT)-compatible remote center of motion needle steering robot: Fusing CT images and electromagnetic sensor data. Med Eng Phys, 2017, 45: 71-77.
|
11. |
Hiraki T, Kamegawa T, Matsuno T, et al. Robotic needle insertion during computed tomography fluoroscopy-guided biopsy: Prospective first-in-human feasibility trial. Eur Radiol, 2020, 30(2): 927-933.
|
12. |
Zhou Y, Thiruvalluvan K, Krzeminski L, et al. CT-guided robotic needle biopsy of lung nodules with respiratory motion - Experimental system and preliminary test. Int J Med Robot, 2013, 9(3): 317-330.
|
13. |
Rojas-Solano JR, Ugalde-Gamboa L, Machuzak M. Robotic bronchoscopy for diagnosis of suspected lung cancer: A feasibility study. J Bronchology Interv Pulmonol, 2018, 25(3): 168-175.
|
14. |
Cerfolio RJ, Ghanim AF, Dylewski M, et al. The long-term survival of robotic lobectomy for non-small cell lung cancer: A multi-institutional study. J Thorac Cardiovasc Surg, 2018, 155(2): 778-786.
|
15. |
Zhao Y, Jiao W, Ren X, et al. Left lower lobe sleeve lobectomy for lung cancer using the Da Vinci surgical system. J Cardiothorac Surg, 2016, 11(1): 59.
|
16. |
Jo MS, Kim DY, Jeong JY. Robotic sleeve lobectomy with four arms for lung cancer centrally located in the right lower lobe: A case report, 2017, 12(1): 108.
|
17. |
Nakamura H, Taniguchi Y, Miwa K, et al. A successful case of robotic bronchoplastic lobectomy for lung cancer. Ann Thorac Cardiovasc Surg, 2013, 19(6): 478-480.
|
18. |
Gu C, Pan X, Chen Y, et al. Short-term and mid-term survival in bronchial sleeve resection by robotic system versus thoracotomy for centrally located lung cancer. Eur J Cardiothorac Surg, 2018, 53(3): 648-655.
|
19. |
Pan X, Gu C, Yang J, et al. Robotic double-sleeve resection of lung cancer: Technical aspects. Eur J Cardiothorac Surg, 2018, 54(1): 183-184.
|
20. |
Ishikawa N, Ohtake Y, Watanabe G. A single-incision thoracoscopic and robotic hybrid procedure via the axillary approach in a patient with thyroid, lung, and mediastinal tumors. J Robot Surg, 2018, 12(4): 741-744.
|
21. |
Harrison OJ, Sarvananthan S, Tamburrini A, et al. Image-guided combined ablation and resection in thoracic surgery for the treatment of multiple pulmonary metastases: A preliminary case series. JTCVS Tech, 2021, 9: 156-162.
|
22. |
Obeso A, Abada H, Souilamas R. Hybrid procedures for pulmonary nodule resection: The beginning of a new era. Arch Bronconeumol (Engl Ed), 2018, 54(4): 183-184.
|
23. |
Vining PF, Lee TM, Bizekis CS, et al. Use of electromagnetic navigational bronchoscopy in robotic pulmonary resection. J Robot Surg, 2018, 12(4): 613-616.
|
24. |
Geraci TC, Ferrari-Light D, Kent A, et al. Technique, outcomes with navigational bronchoscopy using indocyanine green for robotic segmentectomy. Ann Thorac Surg, 2019, 108(2): 363-369.
|
25. |
Cornella KN, Repper DC. A surgeon's guide for various lung nodule localization techniques and the newest technologies. Innovations 2021, 16(1): 26-33.
|
26. |
Borofsky MS, Rivera ME, Dauw CA, et al. Electromagnetic guided percutaneous renal access outcomes among surgeons and trainees of different experience levels: A pilot study. Urology, 2020, 136: 266-271.
|
27. |
Abbas A, Kadakia S, Ambur V, et al. Intraoperative electromagnetic navigational bronchoscopic localization of small, deep, or subsolid pulmonary nodules. J Thorac Cardiovasc Surg, 2017, 153(6): 1581-1590.
|
28. |
Shah AP, Kupelian PA, Waghorn BJ, et al. Real-time tumor tracking in the lung using an electromagnetic tracking system. Int J Radiat Oncol Biol Phys, 2013, 86(3): 477-483.
|
29. |
Chan MK, Kwong DL, Ng SC, et al. Experimental evaluations of the accuracy of 3D and 4D planning in robotic tracking stereotactic body radiotherapy for lung cancers. Med Phys, 2013, 40(4): 041712.
|
30. |
Avasarala SK, Roller L, Katsis J, et al. Sight unseen: Diagnostic yield and safety outcomes of a novel multimodality navigation bronchoscopy platform with real-time target acquisition. Respiration, 2022, 101(2): 166-173.
|
31. |
Gildea TR, Mazzone PJ, Karnak D, et al. Electromagnetic navigation diagnostic bronchoscopy: A prospective study. Am J Respir Crit Care Med, 2006, 174(9): 982-989.
|
32. |
Jackson P, Steinfort DP, Kron T, et al. Practical assessment of bronchoscopically inserted fiducial markers for image guidance in stereotactic lung radiotherapy. J Thorac Oncol, 2016, 11(8): 1363-1368.
|
33. |
Folch EE, Pritchett MA, Nead MA, et al. Electromagnetic navigation bronchoscopy for peripheral pulmonary lesions: One-year results of the prospective, multicenter NAVIGATE study. J Thorac Oncol, 2019, 14(3): 445-458.
|
34. |
Santos RS, Gupta A, Ebright MI, et al. Electromagnetic navigation to aid radiofrequency ablation and biopsy of lung tumors. Ann Thorac Surg, 2010, 89(1): 265-268.
|
35. |
Liu C, Liu X. Using artificial intelligence (Watson for Oncology) for treatment recommendations amongst Chinese patients with lung cancer: Feasibility study.J Med Internet Res, 2018, 20(9): e11087.
|
36. |
Kim MS, Park HY, Kho BG, et al. Artificial intelligence and lung cancer treatment decision: Agreement with recommendation of multidisciplinary tumor board. Transl Lung Cancer Res, 2020, 9(3): 507-514.
|
37. |
Okada S, Tanaba Y, Yamauchi H, et al. A voice-controlled robot assisted thoracoscopic surgery for pulmonary tumor. Kyobu Geka, 1998, 51(9): 735-738.
|
38. |
Okada S, Sugawara H, Tanaba Y, et al. Thoracoscopic major lung resection using a newly developed instrument retraction system and a voice-controlled robot. Kyobu Geka, 2000, 53(10): 862-865.
|
39. |
Okada S, Tanaba Y, Sugawara H, et al. Thoracoscopic major lung resection for primary lung cancer by a single surgeon with a voice-controlled robot and an instrument retraction system. J Thorac Cardiovasc Surg, 2000, 120(2): 414-415.
|
40. |
Lee JG, Jun S, Cho YW, et al. Deep learning in medical imaging: General overview. Korean J Radiol, 2017, 18(4): 570-584.
|
41. |
Chan JYK, Wong EWY, Tsang RK, et al. Early results of a safety and feasibility clinical trial of a novel single-port flexible robot for transoral robotic surgery. Eur Arch Otorhinolaryngol, 2017, 274(11): 3993-3996.
|
42. |
Giataganas P, Hughes M, Yang GZ. Force adaptive robotically assisted endomicroscopy for intraoperative tumour identification. Int J Comput Assist Radiol Surg, 2015, 10(6): 825-832.
|
43. |
Miyashita K, Oude Vrielink T. A cable-driven parallel manipulator with force sensing capabilities for high-accuracy tissue endomicroscopy. Int J Comput Assist Radiol Surg, 2018, 13(5): 659-669.
|
44. |
Marano A, Priora F, Lenti LM, et al. Application of fluorescence in robotic general surgery: Review of the literature and state of the art. World J Surg, 2013, 37(12): 2800-2811.
|
45. |
Yim JJ, Tholen M, Klaassen A, et al. Optimization of a protease activated probe for optical surgical navigation. Mol Pharm, 2018, 15(3): 750-758.
|
46. |
Kawaguchi K, Amemiya T, Shimizu H, et al. Image-guided robotic stereotactic radiotherapy for synchronous cancer of maxillary gingiva and lung. Tumori, 2014, 43(6): 692-695.
|
47. |
Castelli J, Thariat J, Benezery K, et al. Feasibility and efficacy of cyberknife radiotherapy for lung cancer: Early results. Cancer Radiother, 2008, 12(8): 793-799.
|
48. |
Brown WT, Wu X, Fayad F, et al. Application of robotic stereotactic radiotherapy to peripheral stageⅠnon-small cell lung cancer with curative intent. Clin Oncol (R Coll Radiol), 2009, 21(8): 623-631.
|
49. |
Atalar B, Aydin G, Gungor G, et al. Dosimetric comparison of robotic and conventional linac-based stereotactic lung irradiation in early-stage lung cancer. Technol Cancer Res Treat, 2012, 11(3): 249-255.
|
50. |
Rivard MJ, Davis SD, Dewerd LA, et al. Calculated and measured brachytherapy dosimetry parameters in water for the Xoft Axxent X-Ray Source: An electronic brachytherapy source. Med Phys, 2006, 33(11): 4020-4032.
|
51. |
Pöll JJ, Hoogeman MS, Prévost JB, et al. Reducing monitor units for robotic radiosurgery by optimized use of multiple collimators. Med Phys, 2008, 35(6): 2294-2299.
|
52. |
Liang Y, Xu H, Yao J, et al. Four-dimensional intensity-modulated radiotherapy planning for dynamic multileaf collimator tracking radiotherapy. Int J Radiat Oncol Biol Phys, 2009, 74(1): 266-274.
|
53. |
Bibault JE, Prevost B, Dansin E, et al. Stereotactic radiotherapy for lung cancer: Non-invasive real-time tumor tracking. Cancer Radiother, 2010, 14(8): 690-697.
|
54. |
Giataganas P, Hughes M, Payne CJ, et al. Intraoperative robotic-assisted large-area high-speed microscopic imaging and intervention. IEEE Trans Biomed Eng, 2019, 66(1): 208-216.
|
55. |
Lopez A, Zlatev DV, Mach KE, et al. Intraoperative optical biopsy during robotic assisted radical prostatectomy using confocal endomicroscopy. J Urol, 2016, 195(4 Pt 1): 1110-1117.
|
56. |
Zuo S, Yang GZ. Endomicroscopy for computer and robot assisted intervention. IEEE Rev Biomed Eng, 2017, 10: 12-25.
|