1. |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
|
2. |
Zheng R, Zhang S, Zeng H, et al. Cancer incidence and mortality in China, 2016. JNCC, 2022, 2(1): 1-9.
|
3. |
Molina JR, Yang P, Cassivi SD, et al. Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc, 2008, 83(5): 584-594.
|
4. |
Hirsch FR, Scagliotti GV, Mulshine JL, et al. Lung cancer: Current therapies and new targeted treatments. Lancet, 2017, 389(10066): 299-311.
|
5. |
Schegoleva AA, Khozyainova AA, Fedorov AA, et al. Prognosis of different types of non-small cell lung cancer progression: Current state and perspectives. Cell Physiol Biochem, 2021, 55(S2): 29-48.
|
6. |
Holmes JH, Sacchi L, Bellazzi R, et al. Artificial intelligence in medicine AIME 2015. Artif Intell Med, 2017, 81: 1-2.
|
7. |
Schaffter T, Buist DSM, Lee CI, et al. Evaluation of combined artificial intelligence and radiologist assessment to interpret screening mammograms. JAMA Netw Open, 2020, 3(3): e200265.
|
8. |
Das K, Cockerell CJ, Patil A, et al. Machine learning and its application in skin cancer. Int J Environ Res Public Health, 2021, 18(24): 13409.
|
9. |
Gandi C, Vaccarella L, Bientinesi R, et al. Bladder cancer in the time of machine learning: Intelligent tools for diagnosis and management. Urologia, 2021, 88(2): 94-102.
|
10. |
Goldenberg SL, Nir G, Salcudean SE. A new era: Artificial intelligence and machine learning in prostate cancer. Nat Rev Urol, 2019, 16(7): 391-403.
|
11. |
Howard FM, Kochanny S, Koshy M, et al. Machine learning-guided adjuvant treatment of head and neck cancer. JAMA Netw Open, 2020, 3(11): e2025881.
|
12. |
Ji GW, Wang K, Xia YX, et al. Integrating machine learning and tumor immune signature to predict oncologic outcomes in resected biliary tract cancer. Ann Surg Oncol, 2021, 28(7): 4018-4029.
|
13. |
Sultan AS, Elgharib MA, Tavares T, et al. The use of artificial intelligence, machine learning and deep learning in oncologic histopathology. J Oral Pathol Med, 2020, 49(9): 849-856.
|
14. |
Lemaître G, Martí R, Freixenet J, et al. Computer-aided detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: A review. Comput Biol Med, 2015, 60: 8-31.
|
15. |
Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med, 2018, 24(10): 1559-1567.
|
16. |
Hosny A, Parmar C, Coroller TP, et al. Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study. PLoS Med, 2018, 15(11): e1002711.
|
17. |
She Y, Jin Z, Wu J, et al. Development and validation of a deep learning model for non-small cell lung cancer survival. JAMA Netw Open, 2020, 3(6): e205842.
|
18. |
Xu Y, Hosny A, Zeleznik R, et al. Deep learning predicts lung cancer treatment response from serial medical imaging. Clin Cancer Res, 2019, 25(11): 3266-3275.
|
19. |
Bin L, Yuan T, Zhaohui S, et al. A deep learning-based dual-omics prediction model for radiation pneumonitis. Med Phys, 2021, 48(10): 6247-6256.
|
20. |
Chaunzwa TL, Hosny A, Xu Y, et al. Deep learning classification of lung cancer histology using CT images. Sci Rep, 2021, 11(1): 5471.
|
21. |
Tau N, Stundzia A, Yasufuku K, et al. Convolutional neural networks in predicting nodal and distant metastatic potential of newly diagnosed non-small cell lung cancer on FDG PET images. AJR Am J Roentgenol, 2020, 215(1): 192-197.
|
22. |
Wang H, Zhou Z, Li Y, et al. Comparison of machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer from 18 F-FDG PET/CT images. EJNMMI Res, 2017, 7(1): 11.
|
23. |
Yu Y, Zeng D, Ou Q, et al. Association of survival and immune-related biomarkers with immunotherapy in patients with non-small cell lung cancer: A meta-analysis and individual patient-level analysis. JAMA Netw Open, 2019, 2(7): e196879.
|
24. |
Mosquera-Lopez C, Agaian S, Velez-Hoyos A, et al. Computer-aided prostate cancer diagnosis from digitized histopathology: A review on texture-based systems. IEEE Rev Biomed Eng, 2015, 8: 98-113.
|
25. |
Yu W, Tang C, Hobbs BP, et al. Development and validation of a predictive radiomics model for clinical outcomes in stage Ⅰ non-small cell lung cancer. Int J Radiat Oncol Biol Phys, 2018, 102(4): 1090-1097.
|
26. |
Avanzo M, Stancanello J, Pirrone G, et al. Radiomics and deep learning in lung cancer. Strahlenther Onkol, 2020, 196(10): 879-887.
|
27. |
Bortolotto C, Lancia A, Stelitano C, et al. Radiomics features as predictive and prognostic biomarkers in NSCLC. Expert Rev Anticancer Ther, 2021, 21(3): 257-266.
|
28. |
Wei JW, Tafe LJ, Linnik YA, et al. Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks. Sci Rep, 2019, 9(1): 3358.
|
29. |
Yu KH, Zhang C, Berry GJ, et al. Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat Commun, 2016, 7: 12474.
|
30. |
Khosravi P, Kazemi E, Imielinski M, et al. Deep convolutional neural networks enable discrimination of heterogeneous digital pathology images. EBioMedicine, 2018, 27: 317-328.
|
31. |
Nicholson AG, Tsao MS, Beasley MB, et al. The 2021 WHO classification of lung tumors: Impact of advances since 2015. J Thorac Oncol, 2022, 17(3): 362-387.
|
32. |
Tsao MS, Nicholson AG, Maleszewski JJ, et al. Introduction to 2021 WHO classification of thoracic tumors. J Thorac Oncol, 2022, 17(1): e1-e4.
|
33. |
Warth A, Cortis J, Fink L, et al. Training increases concordance in classifying pulmonary adenocarcinomas according to the novel IASLC/ATS/ERS classification. Virchows Arch, 2012, 461(2): 185-193.
|
34. |
Girard N, Deshpande C, Lau C, et al. Comprehensive histologic assessment helps to differentiate multiple lung primary nonsmall cell carcinomas from metastases. Am J Surg Pathol, 2009, 33(12): 1752-1764.
|
35. |
Wang C, Shao J, Lv J, et al. Deep learning for predicting subtype classification and survival of lung adenocarcinoma on computed tomography. Transl Oncol, 2021, 14(8): 101141.
|
36. |
Xiao Y, Wu J, Lin Z, et al. A deep learning-based multi-model ensemble method for cancer prediction. Comput Methods Programs Biomed, 2018, 153: 1-9.
|
37. |
Yu KH, Wang F, Berry GJ, et al. Classifying non-small cell lung cancer types and transcriptomic subtypes using convolutional neural networks. J Am Med Inform Assoc, 2020, 27(5): 757-769.
|
38. |
Li Y, Chen D, Wu X, et al. A narrative review of artificial intelligence-assisted histopathologic diagnosis and decision-making for non-small cell lung cancer: Achievements and limitations. J Thorac Dis, 2021, 13(12): 7006-7020.
|
39. |
Crinò L, Weder W, van Meerbeeck J, et al. Early stage and locally advanced (non-metastatic) non-small-cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol, 2010, 21 Suppl 5: v103-v115.
|
40. |
Yang Z, Yin H, Shi L, et al. A novel microRNA signature for pathological grading in lung adenocarcinoma based on TCGA and GEO data. Int J Mol Med, 2020, 45(5): 1397-1408.
|
41. |
Choi J, Cho HH, Kwon J, et al. A cascaded neural network for staging in non-small cell lung cancer using pre-treatment CT. Diagnostics (Basel), 2021, 11(6): 1047.
|
42. |
Dong Y, Yang W, Wang J, et al. MLW-gcForest: A multi-weighted gcForest model towards the staging of lung adenocarcinoma based on multi-modal genetic data. BMC Bioinformatics, 2019, 20(1): 578.
|
43. |
Shi L, He Y, Yuan Z, et al. Radiomics for response and outcome assessment for non-small cell lung cancer. Technol Cancer Res Treat, 2018, 17: 1533033818782788.
|
44. |
Shiri I, Maleki H, Hajianfar G, et al. Next-generation radiogenomics sequencing for prediction of EGFR and KRAS mutation status in NSCLC patients using multimodal imaging and machine learning algorithms. Mol Imaging Biol, 2020, 22(4): 1132-1148.
|
45. |
Kobayashi K, Bolatkan A, Shiina S, et al. Fully-connected neural networks with reduced parameterization for predicting histological types of lung cancer from somatic mutations. Biomolecules, 2020, 10(9): 1249.
|
46. |
Wang J, Xie X, Shi J, et al. Denoising autoencoder, a deep learning algorithm, aids the identification of a novel molecular signature of lung adenocarcinoma. Genomics Proteomics Bioinformatics, 2020, 18(4): 468-480.
|
47. |
Chen HY, Yu SL, Chen CH, et al. A five-gene signature and clinical outcome in non-small-cell lung cancer. N Engl J Med, 2007, 356(1): 11-20.
|
48. |
Shedden K, Taylor JM, et al. Gene expression-based survival prediction in lung adenocarcinoma: A multi-site, blinded validation study. Nat Med, 2008, 14(8): 822-827.
|
49. |
Gentles AJ, Bratman SV, Lee LJ, et al. Integrating tumor and stromal gene expression signatures with clinical indices for survival stratification of early-stage non-small cell lung cancer. J Natl Cancer Inst, 2015, 107(10): djv211.
|
50. |
Huang P, Cheng CL, Chang YH, et al. Molecular gene signature and prognosis of non-small cell lung cancer. Oncotarget, 2016, 7(32): 51898-51907.
|
51. |
Krzystanek M, Moldvay J, Szüts D, et al. A robust prognostic gene expression signature for early stage lung adenocarcinoma. Biomark Res, 2016, 4: 4.
|
52. |
Shahid M, Choi TG, Nguyen MN, et al. An 8-gene signature for prediction of prognosis and chemoresponse in non-small cell lung cancer. Oncotarget, 2016, 7(52): 86561-86572.
|
53. |
Zhou M, Leung A, Echegaray S, et al. Non-small cell lung cancer radiogenomics map identifies relationships between molecular and imaging phenotypes with prognostic implications. Radiology, 2018, 286(1): 307-315.
|
54. |
Wong CW, Chaudhry A. Radiogenomics of lung cancer. J Thorac Dis, 2020, 12(9): 5104-5109.
|
55. |
Lee B, Chun SH, Hong JH, et al. DeepBTS: Prediction of recurrence-free survival of non-small cell lung cancer using a time-binned deep neural network. Sci Rep, 2020, 10(1): 1952.
|
56. |
Alaa AM, Bolton T, Di Angelantonio E, et al. Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423, 604 UK Biobank participants. PLoS One, 2019, 14(5): e0213653.
|
57. |
Kanda E, Epureanu BI, Adachi T, et al. Application of explainable ensemble artificial intelligence model to categorization of hemodialysis-patient and treatment using nationwide-real-world data in Japan. PLoS One, 2020, 15(5): e0233491.
|
58. |
Matsuo K, Purushotham S, Jiang B, et al. Survival outcome prediction in cervical cancer: Cox models vs deep-learning model. Am J Obstet Gynecol, 2019, 220(4): 381.e1-381.e14.
|
59. |
Stevens LM, Linstead E, Hall JL, et al. Association between coffee intake and incident heart failure risk: A machine learning analysis of the FHS, the ARIC Study, and the CHS. Circ Heart Fail, 2021, 14(2): e006799.
|
60. |
Siah KW, Khozin S, Wong CH, et al. Machine-learning and stochastic tumor growth models for predicting outcomes in patients with advanced non-small-cell lung cancer. JCO Clin Cancer Inform, 2019, 3: 1-11.
|