1. |
GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet, 2020, 396(10258): 1204-1222.
|
2. |
Zhou M, Wang H, Zeng X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2019, 394(10204): 1145-1158.
|
3. |
Paraskevas KI, Veith FJ, Spence JD. How to identify which patients with asymptomatic carotid stenosis could benefit from endarterectomy or stenting. Stroke Vasc Neurol, 2018, 3(2): 92-100.
|
4. |
Naylor AR, Ricco JB, de Borst GJ, et al. Editor's Choice—Management of atherosclerotic carotid and vertebral artery disease: 2017 clinical practice guidelines of the European Society for Vascular Surgery (ESVS). Eur J Vasc Endovasc Surg, 2018, 55(1): 3-81.
|
5. |
李洪, 韩路, 李响, 等. 影像组学辅助磨玻璃结节诊断的研究进展. 中国胸心血管外科临床杂志, 2019, 26(8): 805-809.
|
6. |
毛咪咪, 李海明, 石健, 等. 基于多序列MRI影像组学列线图预测上皮性卵巢癌患者对铂类药物化疗的敏感性. 中华医学杂志, 2022, 102(3): 201-208.
|
7. |
吴晓璐, 徐秋贞, 陈文达, 等. 基于影像组学的肺亚实性结节侵袭性预测模型建立及分析. 中华医学杂志, 2022, 102(3): 209-215.
|
8. |
Zhang R, Zhang Q, Ji A, et al. Identification of high-risk carotid plaque with MRI-based radiomics and machine learning. Eur Radiol, 2021, 31(5): 3116-3126.
|
9. |
Chen S, Liu C, Chen X, et al. A radiomics approach to assess high risk carotid plaques: A non-invasive imaging biomarker, retrospective study. Front Neurol, 2022, 13: 788652.
|
10. |
Huang Z, Cheng XQ, Liu HY, et al. Relation of carotid plaque features detected with ultrasonography-based radiomics to clinical symptoms. Transl Stroke Res, 2021: 10.1007/s12975-021-00963-9.
|
11. |
Acharya UR, Sree SV, Mookiah MR, et al. Computed tomography carotid wall plaque characterization using a combination of discrete wavelet transform and texture features: A pilot study. Proc Inst Mech Eng H, 2013, 227(6): 643-654.
|
12. |
Zaccagna F, Ganeshan B, Arca M, et al. CT texture-based radiomics analysis of carotid arteries identifies vulnerable patients: A preliminary outcome study. Neuroradiology, 2021, 63(7): 1043-1052.
|
13. |
夏冰清, 李翠萍, 钱朝霞, 等. 基于机器学习的影像组学模型预测三阴性乳腺癌新辅助化疗远期预后的应用价值. 中华放射学杂志, 2021, 55(10): 1059-1064.
|
14. |
North American Symptomatic Carotid Endarterectomy Trial Collaborators, Barnett HJM, Taylor DW, et al. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N Engl J Med, 1991, 325(7): 445-453.
|
15. |
中华医学会外科学分会血管外科学组. 颈动脉狭窄诊治指南. 中华血管外科杂志, 2017, 2(2): 78-84.
|
16. |
Baradaran H, Gupta A. Carotid vessel wall imaging on CTA. AJNR Am J Neuroradiol, 2020, 41(3): 380-386.
|
17. |
Baessler B, Luecke C, Lurz J, et al. Cardiac MRI and texture analysis of myocardial T1 and T2 maps in myocarditis with acute versus chronic symptoms of heart failure. Radiology, 2019, 292(3): 608-617.
|
18. |
Ekert K, Hinterleitner C, Baumgartner K, et al. Extended texture analysis of non-enhanced whole-body MRI image data for response assessment in multiple myeloma patients undergoing systemic therapy. Cancers (Basel), 2020, 12(3): 761.
|
19. |
Heo J, Yoon JG, Park H, et al. Machine learning-based model for prediction of outcomes in acute stroke. Stroke, 2019, 50(5): 1263-1265.
|
20. |
Christodoulou E, Ma J, Collins GS, et al. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J Clin Epidemiol, 2019, 110: 12-22.
|