1. |
Yang J, Wang H, Geng C, et al. Advances in intelligent diagnosis methods for pulmonary ground-glass opacity nodules. Biomed Eng Online, 2018, 17(1): 20.
|
2. |
Son BY, Cho S, Yum SW, et al. The maximum standardized uptake value of preoperative positron emission tomography/computed tomography in lung adenocarcinoma with a ground-glass opacity component of less than 30 mm. J Surg Oncol, 2018, 117(3): 451-456.
|
3. |
Henschke CI, Yankelevitz DF, Mirtcheva R, et al. CT screening for lung cancer: Frequency and significance of part-solid and nonsolid nodules. AJR Am J Roentgenol, 2002, 178(5): 1053-1057.
|
4. |
Veronesi G, Travaini LL, Maisonneuve P, et al. Positron emission tomography in the diagnostic work-up of screening-detected lung nodules. Eur Respir J, 2015, 45(2): 501-510.
|
5. |
Kim TJ, Park CM, Goo JM, et al. Is there a role for FDG PET in the management of lung cancer manifesting predominantly as ground-glass opacity? AJR Am J Roentgenol, 2012, 198(1): 83-88.
|
6. |
De Filippo M, Saba L, Concari G, et al. Predictive factors of diagnostic accuracy of CT-guided transthoracic fine-needle aspiration for solid noncalcified, subsolid and mixed pulmonary nodules. Radiol Med, 2013, 118(7): 1071-1081.
|
7. |
Shimizu K, Ikeda N, Tsuboi M, et al. Percutaneous CT-guided fine needle aspiration for lung cancer smaller than 2 cm and revealed by ground-glass opacity at CT. Lung Cancer, 2006, 51(2): 173-179.
|
8. |
MacMahon H, Naidich DP, Goo JM, et al. Guidelines for management of incidental pulmonary nodules detected on CT images: From the Fleischner Society 2017. Radiology, 2017, 284(1): 228-243.
|
9. |
Wu HB, Wang L, Wang QS, et al. Adenocarcinoma with BAC features presented as the nonsolid nodule is prone to be false-negative on 18F-FDG PET/CT. Biomed Res Int, 2015, 2015: 243681.
|
10. |
Lokhandwala T, Bittoni MA, Dann RA, et al. Costs of diagnostic assessment for lung cancer: A medicare claims analysis. Clin Lung Cancer, 2017, 18(1): e27-e34.
|
11. |
Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol, 2017, 14(12): 749-762.
|
12. |
Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images are more than pictures, they are data. Radiology, 2016, 278(2): 563-577.
|
13. |
Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J Clin, 2019, 69(2): 127-157.
|
14. |
Kotrotsou A, Zinn PO, Colen RR. Radiomics in brain tumors: An emerging technique for characterization of tumor environment. Magn Reson Imaging Clin N Am, 2016, 24(4): 719-729.
|
15. |
Lee G, Lee HY, Park H, et al. Radiomics and its emerging role in lung cancer research, imaging biomarkers and clinical management: State of the art. Eur J Radiol, 2017, 86: 297-307.
|
16. |
Jamal-Hanjani M, Quezada SA, Larkin J, et al. Translational implications of tumor heterogeneity. Clin Cancer Res, 2015, 21(6): 1258-1266.
|
17. |
Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med, 2012, 366(10): 883-892.
|
18. |
Travis WD, Brambilla E, Nicholson AG, et al. The 2015 World Health Organization classification of lung tumors: Impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol, 2015, 10(9): 1243-1260.
|
19. |
Swensen SJ, Silverstein MD, Ilstrup DM, et al. The probability of malignancy in solitary pulmonary nodules. Application to small radiologically indeterminate nodules. Archives of internal medicine, 1997, 157(8): 849-855.
|
20. |
McWilliams A, Tammemagi MC, Mayo JR, et al. Probability of cancer in pulmonary nodules detected on first screening CT. N Engl J Med, 2013, 369(10): 910-919.
|
21. |
Shameer K, Johnson KW, Glicksberg BS, et al. Machine learning in cardiovascular medicine: Are we there yet? Heart, 2018, 104(14): 1156-1164.
|
22. |
Vaid A, Somani S, Russak AJ, et al. Machine learning to predict mortality and critical events in a cohort of patients with COVID-19 in New York city: Model development and validation. J Med Internet Res, 2020, 22(11): e24018.
|
23. |
AlQuraishi M. Machine learning in protein structure prediction. Curr Opin Chem Biol, 2021, 65: 1-8.
|
24. |
Causey JL, Zhang J, Ma S, et al. Highly accurate model for prediction of lung nodule malignancy with CT scans. Sci Rep, 2018, 8(1): 9286.
|
25. |
Feng B, Chen X, Chen Y, et al. Solitary solid pulmonary nodules: A CT-based deep learning nomogram helps differentiate tuberculosis granulomas from lung adenocarcinomas. Eur Radiol, 2020, 30(12): 6497-6507.
|
26. |
Chen SH, Qin J, Ji X, et al. Automatic scoring of multiple semantic attributes with multi-task feature leverage: A study on pulmonary nodules in CT images. IEEE Trans Med Imaging, 2017, 36(3): 802-814.
|
27. |
Yang L, Yang J, Zhou X, et al. Development of a radiomics nomogram based on the 2D and 3D CT features to predict the survival of non-small cell lung cancer patients. Eur Radiol, 2019, 29(5): 2196-2206.
|
28. |
Wang T, She Y, Yang Y, et al. Radiomics for survival risk stratification of clinical and pathologic stage ⅠA pure-solid non-small cell lung cancer. Radiology, 2022, 302(2): 425-434.
|
29. |
Rossi G, Barabino E, Fedeli A, et al. Radiomic detection of EGFR mutations in NSCLC. Cancer Res, 2021, 81(3): 724-731.
|
30. |
Sun W, Jiang M, Dang J, et al. Effect of machine learning methods on predicting NSCLC overall survival time based on Radiomics analysis. Radiat Oncol, 2018, 13(1): 197.
|
31. |
Chae HD, Park CM, Park SJ, et al. Computerized texture analysis of persistent part-solid ground-glass nodules: Differentiation of preinvasive lesions from invasive pulmonary adenocarcinomas. Radiology, 2014, 273(1): 285-293.
|
32. |
Lu H, Mu W, Balagurunathan Y, et al. Multi-window CT based Radiomic signatures in differentiating indolent versus aggressive lung cancers in the national lung screening trial: A retrospective study. Cancer Imaging, 2019, 19(1): 45.
|
33. |
Schabath MB, Gillies RJ. Noninvasive quantitative imaging-based biomarkers and lung cancer screening. Am J Respir Crit Care Med, 2015, 192(6): 654-656.
|
34. |
Honda T, Kondo T, Murakami S, et al. Radiographic and pathological analysis of small lung adenocarcinoma using the new IASLC classification. Clin Radiol, 2013, 68(1): e21-e26.
|
35. |
Li W, Wang X, Zhang Y, et al. Radiomic analysis of pulmonary ground-glass opacity nodules for distinction of preinvasive lesions, invasive pulmonary adenocarcinoma and minimally invasive adenocarcinoma based on quantitative texture analysis of CT. Chin J Cancer Res, 2018, 30(4): 415-424.
|
36. |
Hwang IP, Park CM, Park SJ, et al. Persistent pure ground-glass nodules larger than 5 mm: Differentiation of invasive pulmonary adenocarcinomas from preinvasive lesions or minimally invasive adenocarcinomas using texture analysis. Invest Radiol, 2015, 50(11): 798-804.
|
37. |
Son JY, Lee HY, Lee KS, et al. Quantitative CT analysis of pulmonary ground-glass opacity nodules for the distinction of invasive adenocarcinoma from pre-invasive or minimally invasive adenocarcinoma. PLoS One, 2014, 9(8): e104066.
|
38. |
She Y, Zhang L, Zhu H, et al. The predictive value of CT-based radiomics in differentiating indolent from invasive lung adenocarcinoma in patients with pulmonary nodules. Eur Radiol, 2018, 28(12): 5121-5128.
|
39. |
Naito M, Aokage K, Saruwatari K, et al. Microenvironmental changes in the progression from adenocarcinoma in situ to minimally invasive adenocarcinoma and invasive lepidic predominant adenocarcinoma of the lung. Lung Cancer, 2016, 100: 53-62.
|
40. |
Zhang C, Zhang J, Xu FP, et al. Genomic landscape and immune microenvironment features of preinvasive and early invasive lung adenocarcinoma. J Thorac Oncol, 2019, 14(11): 1912-1923.
|
41. |
Lee HY, Lee KS. Ground-glass opacity nodules: Histopathology, imaging evaluation, and clinical implications. J Thorac Imaging, 2011, 26(2): 106-118.
|
42. |
Kato F, Hamasaki M, Miyake Y, et al. Clinicopathological characteristics of subcentimeter adenocarcinomas of the lung. Lung Cancer, 2012, 77(3): 495-500.
|