- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China;
The cardiac conduction system (CCS) is a set of specialized myocardial pathways that spontaneously generate and conduct impulses transmitting throughout the heart, and causing the coordinated contractions of all parts of the heart. A comprehensive understanding of the anatomical characteristics of the CCS in the heart is the basis of studying cardiac electrophysiology and treating conduction-related diseases. It is also the key of avoiding damage to the CCS during open heart surgery. How to identify and locate the CCS has always been a hot topic in researches. Here, we review the histological imaging methods of the CCS and the specific molecular markers, as well as the exploration for localization and visualization of the CCS. We especially put emphasis on the clinical application prospects and the future development directions of non-destructive imaging technology and real-time localization methods of the CCS that have emerged in recent years.
Citation: YU Kai, GAN Changping. Research progress of visualization methods and localization techniques of the cardiac conduction system. Chinese Journal of Clinical Thoracic and Cardiovascular Surgery, 2024, 31(1): 173-180. doi: 10.7507/1007-4848.202211029 Copy
1. | Titus JL, Daugherty GW, Kirklin JW, et al. Lesions of the atrioventricular conduction system after repair of ventricular septal defect. Relation to heart block. Circulation, 1963, 28: 82-88. |
2. | Liberman L, Silver ES, Chai PJ, et al. Incidence and characteristics of heart block after heart surgery in pediatric patients: A multicenter study. J Thorac Cardiovasc Surg, 2016, 152(1): 197-202. |
3. | Romer AJ, Tabbutt S, Etheridge SP, et al. Atrioventricular block after congenital heart surgery: Analysis from the Pediatric Cardiac Critical Care Consortium. J Thorac Cardiovasc Surg, 2019, 157(3): 1168-1177. |
4. | Anderson JB, Czosek RJ, Knilans TK, et al. Postoperative heart block in children with common forms of congenital heart disease: Results from the KID Database. J Cardiovasc Electrophysiol, 2012, 23(12): 1349-1354. |
5. | van Eif VWW, Stefanovic S, Mohan RA, et al. Gradual differentiation and confinement of the cardiac conduction system as indicated by marker gene expression. Biochim Biophys Acta Mol Cell Res, 2020, 1867(3): 118509. |
6. | Yanni J, Boyett MR, Anderson RH, et al. The extent of the specialized atrioventricular ring tissues. Heart Rhythm, 2009, 6(5): 672-680. |
7. | Atkinson AJ, Logantha SJ, Hao G, et al. Functional, anatomical, and molecular investigation of the cardiac conduction system and arrhythmogenic atrioventricular ring tissue in the rat heart. J Am Heart Assoc, 2013, 2(6): e000246. |
8. | Sánchez-Quintana D, Cabrera JA, Farré J, et al. Sinus node revisited in the era of electroanatomical mapping and catheter ablation. Heart, 2005, 91(2): 189-194. |
9. | Anderson RH, Ho SY, Becker AE. The surgical anatomy of the conduction tissues. Thorax, 1983, 38(6): 408-420. |
10. | Stephenson RS, Atkinson A, Kottas P, et al. High resolution 3-dimensional imaging of the human cardiac conduction system from microanatomy to mathematical modeling. Sci Rep, 2017, 7(1): 7188. |
11. | Elizari MV. The normal variants in the left bundle branch system. J Electrocardiol, 2017, 50(4): 389-399. |
12. | Padala SK, Cabrera JA, Ellenbogen KA. Anatomy of the cardiac conduction system. Pacing Clin Electrophysiol, 2021, 44(1): 15-25. |
13. | Yamamoto M, Dobrzynski H, Tellez J, et al. Extended atrial conduction system characterised by the expression of the HCN4 channel and connexin45. Cardiovasc Res, 2006, 72(2): 271-281. |
14. | Sizarov A, Devalla HD, Anderson RH, et al. Molecular analysis of patterning of conduction tissues in the developing human heart. Circ Arrhythm Electrophysiol, 2011, 4(4): 532-542. |
15. | Anderson RH. The disposition and innervation of atrioventricular ring specialized tissue in rats and rabbits. Journal of anatomy, 1972, 113(Pt 2): 197-211. |
16. | Nooma K, Saga T, Iwanaga J, et al. A novel method with which to visualize the human sinuatrial node: Application for a better understanding of the gross anatomy of this part of the conduction system. Clin Anat, 2020, 33(2): 232-236. |
17. | Cabrera JÁ, Anderson RH, Macías Y, et al. Variable arrangement of the atrioventricular conduction axis within the triangle of Koch: Implications for permanent his bundle pacing. JACC Clin Electrophysiol, 2020, 6(4): 362-377. |
18. | Baruteau AE, Abrams DJ, Ho SY, et al. Cardiac conduction system in congenitally corrected transposition of the great arteries and its clinical relevance. J Am Heart Assoc, 2017, 6(12): e007759. |
19. | Nathan M, Karamichalis JM, Liu H, et al. Surgical technical performance scores are predictors of late mortality and unplanned reinterventions in infants after cardiac surgery. J Thorac Cardiovasc Surg, 2012, 144(5): 1095-1101. |
20. | Akiyama T. Sunao Tawara: Discoverer of the atrioventricular conduction system of the heart. Cardiol J, 2010, 17(4): 428-434. |
21. | Anderson RH, Boyett MR, Dobrzynski H, et al. The anatomy of the conduction system: Implications for the clinical cardiologist. J Cardiovasc Transl Res, 2013, 6(2): 187-196. |
22. | Aschoff L. Referat uber die herzstorungen in ihren beziehungen zu den spezifischen muskelsystem des herzens. Verh Dtsch Pathol Ges, 1910, (14): 3-35. |
23. | Monckeberg JG. Beitrage zur normalen und pathologischen anatomie des herzens. Verh Dtsch Pathol Ges, 1910, (14): 64-71. |
24. | Hara T. Morphological and histochemical studies on the cardiac conduction system of the dog. Arch Histol Jpn, 1967, 28(3): 227-246. |
25. | Remme CA, Verkerk AO, Hoogaars WM, et al. The cardiac sodium channel displays differential distribution in the conduction system and transmural heterogeneity in the murine ventricular myocardium. Basic Res Cardiol, 2009, 104(5): 511-522. |
26. | Alcoléa S, Théveniau-Ruissy M, Jarry-Guichard T, et al. Downregulation of connexin 45 gene products during mouse heart development. Circ Res, 1999, 84(12): 1365-1379. |
27. | Coppen SR, Kodama I, Boyett MR, et al. Connexin45, a major connexin of the rabbit sinoatrial node, is co-expressed with connexin43 in a restricted zone at the nodal-crista terminalis border. J Histochem Cytochem, 1999, 47(7): 907-918. |
28. | Coppen SR, Severs NJ, Gourdie RG. Connexin45 (alpha 6) expression delineates an extended conduction system in the embryonic and mature rodent heart. Dev Genet, 1999, 24(1-2): 82-90. |
29. | Hoogaars WM, Tessari A, Moorman AF, et al. The transcriptional repressor Tbx3 delineates the developing central conduction system of the heart. Cardiovasc Res, 2004, 62(3): 489-499. |
30. | Rentschler S, Vaidya DM, Tamaddon H, et al. Visualization and functional characterization of the developing murine cardiac conduction system. Development, 2001, 128(10): 1785-1792. |
31. | Liang X, Wang G, Lin L, et al. HCN4 dynamically marks the first heart field and conduction system precursors. Circ Res, 2013, 113(4): 399-407. |
32. | Harris BS, Baicu CF, Haghshenas N, et al. Remodeling of the peripheral cardiac conduction system in response to pressure overload. Am J Physiol Heart Circ Physiol, 2012, 302(8): H1712-H1725. |
33. | Liang X, Evans SM, Sun Y. Insights into cardiac conduction system formation provided by HCN4 expression. Trends Cardiovasc Med, 2015, 25(1): 1-9. |
34. | Lepley D, Bormes W, KAYSER K. AN electronic device for accurate identification of the cardiac conduction system. Its development and use in open heart surgery. Am J Surg, 1963, 106: 933-937. |
35. | Bernhard WF, Grass AM. A method for localization of the cardiac conduction system during open-heart surgery. N Engl J Med, 1961, 265: 1079-1083. |
36. | Stuckey JH, Hoffman BF. Open heart surgery. The prevention of injury to the specialized conducting system. Arch Surg, 1962, 85: 224-229. |
37. | Kaiser GA, Waldo AL, Beach PM, et al. Specialized cardiac conduction system. Improved electrophysiologic identification technique at surgery. Arch Surg, 1970, 101(6): 673-676. |
38. | Krongrad E, Malm JR, Bowman FO, et al. Electrophysiological delineation of the specialized A-V conduction system in patients with congenital heart disease. Ⅱ. Delineation of the distal His bundle and the right bundle branch. Circulation, 1974, 49(6): 1232-1238. |
39. | Li J, Inada S, Schneider JE, et al. Three-dimensional computer model of the right atrium including the sinoatrial and atrioventricular nodes predicts classical nodal behaviours. PLoS One, 2014, 9(11): e112547. |
40. | Bordas R, Gillow K, Lou Q, et al. Rabbit-specific ventricular model of cardiac electrophysiological function including specialized conduction system. Prog Biophys Mol Biol, 2011, 107(1): 90-100. |
41. | Stephenson RS, Jones CB, Guerrero R, et al. High-resolution contrast-enhanced micro-computed tomography to identify the cardiac conduction system in congenitally malformed hearts: Valuable insight from a hospital archive. JACC Cardiovasc Imaging, 2018, 11(11): 1706-1712. |
42. | Stephenson RS, Boyett MR, Hart G, et al. Contrast enhanced micro-computed tomography resolves the 3-dimensional morphology of the cardiac conduction system in mammalian hearts. PLoS One, 2012, 7(4): e35299. |
43. | Shinohara G, Morita K, Hoshino M, et al. Three dimensional visualization of human cardiac conduction tissue in whole heart specimens by high-resolution phase-contrast CT imaging using synchrotron radiation. World J Pediatr Congenit Heart Surg, 2016, 7(6): 700-705. |
44. | Kaneko Y, Shinohara G, Hoshino M, et al. Intact imaging of human heart structure using X-ray phase-contrast tomography. Pediatr Cardiol, 2017, 38(2): 390-393. |
45. | Yoshitake S, Kaneko Y, Morita K, et al. Visualization and quantification of the atrioventricular conduction axis in hearts with ventricular septal defect using phase contrast computed tomography. J Thorac Cardiovasc Surg, 2020, 160(2): 490-496. |
46. | Bagdonas S, Zurauskas E, Streckyte G, et al. Spectroscopic studies of the human heart conduction system ex vivo: Implication for optical visualization. J Photochem Photobiol B, 2008, 92(2): 128-134. |
47. | Perk M, Flynn GJ, Gulamhusein S, et al. Laser induced fluorescence identification of sinoatrial and atrioventricular nodal conduction tissue. Pacing Clin Electrophysiol, 1993, 16(8): 1701-1712. |
48. | Venius J, Bagdonas S, Zurauskas E, et al. Visualization of human heart conduction system by means of fluorescence spectroscopy. J Biomed Opt, 2011, 16(10): 107001. |
49. | Huang C, Kaza AK, Hitchcock RW, et al. Identification of nodal tissue in the living heart using rapid scanning fiber-optics confocal microscopy and extracellular fluorophores. Circ Cardiovasc Imaging, 2013, 6(5): 739-746. |
50. | Huang C, Sachse FB, Hitchcock RW, et al. Sensitivity and specificity of cardiac tissue discrimination using fiber-optics confocal microscopy. PLoS One, 2016, 11(1): e0147667. |
51. | Kaza AK, Mondal A, Piekarski B, et al. Intraoperative localization of cardiac conduction tissue regions using real-time fibre-optic confocal microscopy: First in human trial. Eur J Cardiothorac Surg, 2020, 58(2): 261-268. |
52. | Hong G, Lee JC, Robinson JT, et al. Multifunctional in vivo vascular imaging using near-infrared Ⅱ fluorescence. Nat Med, 2012, 18(12): 1841-1846. |
53. | Hu Z, Fang C, Li B, et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-Ⅰ/Ⅱ windows. Nat Biomed Eng, 2020, 4(3): 259-271. |
54. | Pei G, Liu Y, Liu Q, et al. The safety and feasibility of intraoperative near-infrared fluorescence imaging with indocyanine green in thoracoscopic sympathectomy for primary palmar hyperhidrosis. Thorac Cancer, 2020, 11(4): 943-949. |
55. | Kaushal S, McElroy MK, Luiken GA, et al. Fluorophore-conjugated anti-CEA antibody for the intraoperative imaging of pancreatic and colorectal cancer. J Gastrointest Surg, 2008, 12(11): 1938-1950. |
56. | Turner MA, Hollandsworth HM, Nishino H, et al. Fluorescent anti-MUC5AC brightly targets pancreatic cancer in a patient-derived orthotopic xenograft. In Vivo, 2022, 36(1): 57-62. |
57. | Lwin TM, Murakami T, Miyake K, et al. Tumor-specific labeling of pancreatic cancer using a humanized anti-CEA antibody conjugated to a near-infrared fluorophore. Ann Surg Oncol, 2018, 25(4): 1079-1085. |
58. | Goodyer WR, Beyersdorf BM, Duan L, et al. In vivo visualization and molecular targeting of the cardiac conduction system. J Clin Invest, 2022, 132(20): e156955. |
- 1. Titus JL, Daugherty GW, Kirklin JW, et al. Lesions of the atrioventricular conduction system after repair of ventricular septal defect. Relation to heart block. Circulation, 1963, 28: 82-88.
- 2. Liberman L, Silver ES, Chai PJ, et al. Incidence and characteristics of heart block after heart surgery in pediatric patients: A multicenter study. J Thorac Cardiovasc Surg, 2016, 152(1): 197-202.
- 3. Romer AJ, Tabbutt S, Etheridge SP, et al. Atrioventricular block after congenital heart surgery: Analysis from the Pediatric Cardiac Critical Care Consortium. J Thorac Cardiovasc Surg, 2019, 157(3): 1168-1177.
- 4. Anderson JB, Czosek RJ, Knilans TK, et al. Postoperative heart block in children with common forms of congenital heart disease: Results from the KID Database. J Cardiovasc Electrophysiol, 2012, 23(12): 1349-1354.
- 5. van Eif VWW, Stefanovic S, Mohan RA, et al. Gradual differentiation and confinement of the cardiac conduction system as indicated by marker gene expression. Biochim Biophys Acta Mol Cell Res, 2020, 1867(3): 118509.
- 6. Yanni J, Boyett MR, Anderson RH, et al. The extent of the specialized atrioventricular ring tissues. Heart Rhythm, 2009, 6(5): 672-680.
- 7. Atkinson AJ, Logantha SJ, Hao G, et al. Functional, anatomical, and molecular investigation of the cardiac conduction system and arrhythmogenic atrioventricular ring tissue in the rat heart. J Am Heart Assoc, 2013, 2(6): e000246.
- 8. Sánchez-Quintana D, Cabrera JA, Farré J, et al. Sinus node revisited in the era of electroanatomical mapping and catheter ablation. Heart, 2005, 91(2): 189-194.
- 9. Anderson RH, Ho SY, Becker AE. The surgical anatomy of the conduction tissues. Thorax, 1983, 38(6): 408-420.
- 10. Stephenson RS, Atkinson A, Kottas P, et al. High resolution 3-dimensional imaging of the human cardiac conduction system from microanatomy to mathematical modeling. Sci Rep, 2017, 7(1): 7188.
- 11. Elizari MV. The normal variants in the left bundle branch system. J Electrocardiol, 2017, 50(4): 389-399.
- 12. Padala SK, Cabrera JA, Ellenbogen KA. Anatomy of the cardiac conduction system. Pacing Clin Electrophysiol, 2021, 44(1): 15-25.
- 13. Yamamoto M, Dobrzynski H, Tellez J, et al. Extended atrial conduction system characterised by the expression of the HCN4 channel and connexin45. Cardiovasc Res, 2006, 72(2): 271-281.
- 14. Sizarov A, Devalla HD, Anderson RH, et al. Molecular analysis of patterning of conduction tissues in the developing human heart. Circ Arrhythm Electrophysiol, 2011, 4(4): 532-542.
- 15. Anderson RH. The disposition and innervation of atrioventricular ring specialized tissue in rats and rabbits. Journal of anatomy, 1972, 113(Pt 2): 197-211.
- 16. Nooma K, Saga T, Iwanaga J, et al. A novel method with which to visualize the human sinuatrial node: Application for a better understanding of the gross anatomy of this part of the conduction system. Clin Anat, 2020, 33(2): 232-236.
- 17. Cabrera JÁ, Anderson RH, Macías Y, et al. Variable arrangement of the atrioventricular conduction axis within the triangle of Koch: Implications for permanent his bundle pacing. JACC Clin Electrophysiol, 2020, 6(4): 362-377.
- 18. Baruteau AE, Abrams DJ, Ho SY, et al. Cardiac conduction system in congenitally corrected transposition of the great arteries and its clinical relevance. J Am Heart Assoc, 2017, 6(12): e007759.
- 19. Nathan M, Karamichalis JM, Liu H, et al. Surgical technical performance scores are predictors of late mortality and unplanned reinterventions in infants after cardiac surgery. J Thorac Cardiovasc Surg, 2012, 144(5): 1095-1101.
- 20. Akiyama T. Sunao Tawara: Discoverer of the atrioventricular conduction system of the heart. Cardiol J, 2010, 17(4): 428-434.
- 21. Anderson RH, Boyett MR, Dobrzynski H, et al. The anatomy of the conduction system: Implications for the clinical cardiologist. J Cardiovasc Transl Res, 2013, 6(2): 187-196.
- 22. Aschoff L. Referat uber die herzstorungen in ihren beziehungen zu den spezifischen muskelsystem des herzens. Verh Dtsch Pathol Ges, 1910, (14): 3-35.
- 23. Monckeberg JG. Beitrage zur normalen und pathologischen anatomie des herzens. Verh Dtsch Pathol Ges, 1910, (14): 64-71.
- 24. Hara T. Morphological and histochemical studies on the cardiac conduction system of the dog. Arch Histol Jpn, 1967, 28(3): 227-246.
- 25. Remme CA, Verkerk AO, Hoogaars WM, et al. The cardiac sodium channel displays differential distribution in the conduction system and transmural heterogeneity in the murine ventricular myocardium. Basic Res Cardiol, 2009, 104(5): 511-522.
- 26. Alcoléa S, Théveniau-Ruissy M, Jarry-Guichard T, et al. Downregulation of connexin 45 gene products during mouse heart development. Circ Res, 1999, 84(12): 1365-1379.
- 27. Coppen SR, Kodama I, Boyett MR, et al. Connexin45, a major connexin of the rabbit sinoatrial node, is co-expressed with connexin43 in a restricted zone at the nodal-crista terminalis border. J Histochem Cytochem, 1999, 47(7): 907-918.
- 28. Coppen SR, Severs NJ, Gourdie RG. Connexin45 (alpha 6) expression delineates an extended conduction system in the embryonic and mature rodent heart. Dev Genet, 1999, 24(1-2): 82-90.
- 29. Hoogaars WM, Tessari A, Moorman AF, et al. The transcriptional repressor Tbx3 delineates the developing central conduction system of the heart. Cardiovasc Res, 2004, 62(3): 489-499.
- 30. Rentschler S, Vaidya DM, Tamaddon H, et al. Visualization and functional characterization of the developing murine cardiac conduction system. Development, 2001, 128(10): 1785-1792.
- 31. Liang X, Wang G, Lin L, et al. HCN4 dynamically marks the first heart field and conduction system precursors. Circ Res, 2013, 113(4): 399-407.
- 32. Harris BS, Baicu CF, Haghshenas N, et al. Remodeling of the peripheral cardiac conduction system in response to pressure overload. Am J Physiol Heart Circ Physiol, 2012, 302(8): H1712-H1725.
- 33. Liang X, Evans SM, Sun Y. Insights into cardiac conduction system formation provided by HCN4 expression. Trends Cardiovasc Med, 2015, 25(1): 1-9.
- 34. Lepley D, Bormes W, KAYSER K. AN electronic device for accurate identification of the cardiac conduction system. Its development and use in open heart surgery. Am J Surg, 1963, 106: 933-937.
- 35. Bernhard WF, Grass AM. A method for localization of the cardiac conduction system during open-heart surgery. N Engl J Med, 1961, 265: 1079-1083.
- 36. Stuckey JH, Hoffman BF. Open heart surgery. The prevention of injury to the specialized conducting system. Arch Surg, 1962, 85: 224-229.
- 37. Kaiser GA, Waldo AL, Beach PM, et al. Specialized cardiac conduction system. Improved electrophysiologic identification technique at surgery. Arch Surg, 1970, 101(6): 673-676.
- 38. Krongrad E, Malm JR, Bowman FO, et al. Electrophysiological delineation of the specialized A-V conduction system in patients with congenital heart disease. Ⅱ. Delineation of the distal His bundle and the right bundle branch. Circulation, 1974, 49(6): 1232-1238.
- 39. Li J, Inada S, Schneider JE, et al. Three-dimensional computer model of the right atrium including the sinoatrial and atrioventricular nodes predicts classical nodal behaviours. PLoS One, 2014, 9(11): e112547.
- 40. Bordas R, Gillow K, Lou Q, et al. Rabbit-specific ventricular model of cardiac electrophysiological function including specialized conduction system. Prog Biophys Mol Biol, 2011, 107(1): 90-100.
- 41. Stephenson RS, Jones CB, Guerrero R, et al. High-resolution contrast-enhanced micro-computed tomography to identify the cardiac conduction system in congenitally malformed hearts: Valuable insight from a hospital archive. JACC Cardiovasc Imaging, 2018, 11(11): 1706-1712.
- 42. Stephenson RS, Boyett MR, Hart G, et al. Contrast enhanced micro-computed tomography resolves the 3-dimensional morphology of the cardiac conduction system in mammalian hearts. PLoS One, 2012, 7(4): e35299.
- 43. Shinohara G, Morita K, Hoshino M, et al. Three dimensional visualization of human cardiac conduction tissue in whole heart specimens by high-resolution phase-contrast CT imaging using synchrotron radiation. World J Pediatr Congenit Heart Surg, 2016, 7(6): 700-705.
- 44. Kaneko Y, Shinohara G, Hoshino M, et al. Intact imaging of human heart structure using X-ray phase-contrast tomography. Pediatr Cardiol, 2017, 38(2): 390-393.
- 45. Yoshitake S, Kaneko Y, Morita K, et al. Visualization and quantification of the atrioventricular conduction axis in hearts with ventricular septal defect using phase contrast computed tomography. J Thorac Cardiovasc Surg, 2020, 160(2): 490-496.
- 46. Bagdonas S, Zurauskas E, Streckyte G, et al. Spectroscopic studies of the human heart conduction system ex vivo: Implication for optical visualization. J Photochem Photobiol B, 2008, 92(2): 128-134.
- 47. Perk M, Flynn GJ, Gulamhusein S, et al. Laser induced fluorescence identification of sinoatrial and atrioventricular nodal conduction tissue. Pacing Clin Electrophysiol, 1993, 16(8): 1701-1712.
- 48. Venius J, Bagdonas S, Zurauskas E, et al. Visualization of human heart conduction system by means of fluorescence spectroscopy. J Biomed Opt, 2011, 16(10): 107001.
- 49. Huang C, Kaza AK, Hitchcock RW, et al. Identification of nodal tissue in the living heart using rapid scanning fiber-optics confocal microscopy and extracellular fluorophores. Circ Cardiovasc Imaging, 2013, 6(5): 739-746.
- 50. Huang C, Sachse FB, Hitchcock RW, et al. Sensitivity and specificity of cardiac tissue discrimination using fiber-optics confocal microscopy. PLoS One, 2016, 11(1): e0147667.
- 51. Kaza AK, Mondal A, Piekarski B, et al. Intraoperative localization of cardiac conduction tissue regions using real-time fibre-optic confocal microscopy: First in human trial. Eur J Cardiothorac Surg, 2020, 58(2): 261-268.
- 52. Hong G, Lee JC, Robinson JT, et al. Multifunctional in vivo vascular imaging using near-infrared Ⅱ fluorescence. Nat Med, 2012, 18(12): 1841-1846.
- 53. Hu Z, Fang C, Li B, et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-Ⅰ/Ⅱ windows. Nat Biomed Eng, 2020, 4(3): 259-271.
- 54. Pei G, Liu Y, Liu Q, et al. The safety and feasibility of intraoperative near-infrared fluorescence imaging with indocyanine green in thoracoscopic sympathectomy for primary palmar hyperhidrosis. Thorac Cancer, 2020, 11(4): 943-949.
- 55. Kaushal S, McElroy MK, Luiken GA, et al. Fluorophore-conjugated anti-CEA antibody for the intraoperative imaging of pancreatic and colorectal cancer. J Gastrointest Surg, 2008, 12(11): 1938-1950.
- 56. Turner MA, Hollandsworth HM, Nishino H, et al. Fluorescent anti-MUC5AC brightly targets pancreatic cancer in a patient-derived orthotopic xenograft. In Vivo, 2022, 36(1): 57-62.
- 57. Lwin TM, Murakami T, Miyake K, et al. Tumor-specific labeling of pancreatic cancer using a humanized anti-CEA antibody conjugated to a near-infrared fluorophore. Ann Surg Oncol, 2018, 25(4): 1079-1085.
- 58. Goodyer WR, Beyersdorf BM, Duan L, et al. In vivo visualization and molecular targeting of the cardiac conduction system. J Clin Invest, 2022, 132(20): e156955.