- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China;
The cardiac conduction system (CCS) is a set of specialized myocardial pathways that spontaneously generate and conduct impulses transmitting throughout the heart, and causing the coordinated contractions of all parts of the heart. A comprehensive understanding of the anatomical characteristics of the CCS in the heart is the basis of studying cardiac electrophysiology and treating conduction-related diseases. It is also the key of avoiding damage to the CCS during open heart surgery. How to identify and locate the CCS has always been a hot topic in researches. Here, we review the histological imaging methods of the CCS and the specific molecular markers, as well as the exploration for localization and visualization of the CCS. We especially put emphasis on the clinical application prospects and the future development directions of non-destructive imaging technology and real-time localization methods of the CCS that have emerged in recent years.
Citation: YU Kai, GAN Changping. Research progress of visualization methods and localization techniques of the cardiac conduction system. Chinese Journal of Clinical Thoracic and Cardiovascular Surgery, 2024, 31(1): 173-180. doi: 10.7507/1007-4848.202211029 Copy
Copyright © the editorial department of Chinese Journal of Clinical Thoracic and Cardiovascular Surgery of West China Medical Publisher. All rights reserved
1. | Titus JL, Daugherty GW, Kirklin JW, et al. Lesions of the atrioventricular conduction system after repair of ventricular septal defect. Relation to heart block. Circulation, 1963, 28: 82-88. |
2. | Liberman L, Silver ES, Chai PJ, et al. Incidence and characteristics of heart block after heart surgery in pediatric patients: A multicenter study. J Thorac Cardiovasc Surg, 2016, 152(1): 197-202. |
3. | Romer AJ, Tabbutt S, Etheridge SP, et al. Atrioventricular block after congenital heart surgery: Analysis from the Pediatric Cardiac Critical Care Consortium. J Thorac Cardiovasc Surg, 2019, 157(3): 1168-1177. |
4. | Anderson JB, Czosek RJ, Knilans TK, et al. Postoperative heart block in children with common forms of congenital heart disease: Results from the KID Database. J Cardiovasc Electrophysiol, 2012, 23(12): 1349-1354. |
5. | van Eif VWW, Stefanovic S, Mohan RA, et al. Gradual differentiation and confinement of the cardiac conduction system as indicated by marker gene expression. Biochim Biophys Acta Mol Cell Res, 2020, 1867(3): 118509. |
6. | Yanni J, Boyett MR, Anderson RH, et al. The extent of the specialized atrioventricular ring tissues. Heart Rhythm, 2009, 6(5): 672-680. |
7. | Atkinson AJ, Logantha SJ, Hao G, et al. Functional, anatomical, and molecular investigation of the cardiac conduction system and arrhythmogenic atrioventricular ring tissue in the rat heart. J Am Heart Assoc, 2013, 2(6): e000246. |
8. | Sánchez-Quintana D, Cabrera JA, Farré J, et al. Sinus node revisited in the era of electroanatomical mapping and catheter ablation. Heart, 2005, 91(2): 189-194. |
9. | Anderson RH, Ho SY, Becker AE. The surgical anatomy of the conduction tissues. Thorax, 1983, 38(6): 408-420. |
10. | Stephenson RS, Atkinson A, Kottas P, et al. High resolution 3-dimensional imaging of the human cardiac conduction system from microanatomy to mathematical modeling. Sci Rep, 2017, 7(1): 7188. |
11. | Elizari MV. The normal variants in the left bundle branch system. J Electrocardiol, 2017, 50(4): 389-399. |
12. | Padala SK, Cabrera JA, Ellenbogen KA. Anatomy of the cardiac conduction system. Pacing Clin Electrophysiol, 2021, 44(1): 15-25. |
13. | Yamamoto M, Dobrzynski H, Tellez J, et al. Extended atrial conduction system characterised by the expression of the HCN4 channel and connexin45. Cardiovasc Res, 2006, 72(2): 271-281. |
14. | Sizarov A, Devalla HD, Anderson RH, et al. Molecular analysis of patterning of conduction tissues in the developing human heart. Circ Arrhythm Electrophysiol, 2011, 4(4): 532-542. |
15. | Anderson RH. The disposition and innervation of atrioventricular ring specialized tissue in rats and rabbits. Journal of anatomy, 1972, 113(Pt 2): 197-211. |
16. | Nooma K, Saga T, Iwanaga J, et al. A novel method with which to visualize the human sinuatrial node: Application for a better understanding of the gross anatomy of this part of the conduction system. Clin Anat, 2020, 33(2): 232-236. |
17. | Cabrera JÁ, Anderson RH, Macías Y, et al. Variable arrangement of the atrioventricular conduction axis within the triangle of Koch: Implications for permanent his bundle pacing. JACC Clin Electrophysiol, 2020, 6(4): 362-377. |
18. | Baruteau AE, Abrams DJ, Ho SY, et al. Cardiac conduction system in congenitally corrected transposition of the great arteries and its clinical relevance. J Am Heart Assoc, 2017, 6(12): e007759. |
19. | Nathan M, Karamichalis JM, Liu H, et al. Surgical technical performance scores are predictors of late mortality and unplanned reinterventions in infants after cardiac surgery. J Thorac Cardiovasc Surg, 2012, 144(5): 1095-1101. |
20. | Akiyama T. Sunao Tawara: Discoverer of the atrioventricular conduction system of the heart. Cardiol J, 2010, 17(4): 428-434. |
21. | Anderson RH, Boyett MR, Dobrzynski H, et al. The anatomy of the conduction system: Implications for the clinical cardiologist. J Cardiovasc Transl Res, 2013, 6(2): 187-196. |
22. | Aschoff L. Referat uber die herzstorungen in ihren beziehungen zu den spezifischen muskelsystem des herzens. Verh Dtsch Pathol Ges, 1910, (14): 3-35. |
23. | Monckeberg JG. Beitrage zur normalen und pathologischen anatomie des herzens. Verh Dtsch Pathol Ges, 1910, (14): 64-71. |
24. | Hara T. Morphological and histochemical studies on the cardiac conduction system of the dog. Arch Histol Jpn, 1967, 28(3): 227-246. |
25. | Remme CA, Verkerk AO, Hoogaars WM, et al. The cardiac sodium channel displays differential distribution in the conduction system and transmural heterogeneity in the murine ventricular myocardium. Basic Res Cardiol, 2009, 104(5): 511-522. |
26. | Alcoléa S, Théveniau-Ruissy M, Jarry-Guichard T, et al. Downregulation of connexin 45 gene products during mouse heart development. Circ Res, 1999, 84(12): 1365-1379. |
27. | Coppen SR, Kodama I, Boyett MR, et al. Connexin45, a major connexin of the rabbit sinoatrial node, is co-expressed with connexin43 in a restricted zone at the nodal-crista terminalis border. J Histochem Cytochem, 1999, 47(7): 907-918. |
28. | Coppen SR, Severs NJ, Gourdie RG. Connexin45 (alpha 6) expression delineates an extended conduction system in the embryonic and mature rodent heart. Dev Genet, 1999, 24(1-2): 82-90. |
29. | Hoogaars WM, Tessari A, Moorman AF, et al. The transcriptional repressor Tbx3 delineates the developing central conduction system of the heart. Cardiovasc Res, 2004, 62(3): 489-499. |
30. | Rentschler S, Vaidya DM, Tamaddon H, et al. Visualization and functional characterization of the developing murine cardiac conduction system. Development, 2001, 128(10): 1785-1792. |
31. | Liang X, Wang G, Lin L, et al. HCN4 dynamically marks the first heart field and conduction system precursors. Circ Res, 2013, 113(4): 399-407. |
32. | Harris BS, Baicu CF, Haghshenas N, et al. Remodeling of the peripheral cardiac conduction system in response to pressure overload. Am J Physiol Heart Circ Physiol, 2012, 302(8): H1712-H1725. |
33. | Liang X, Evans SM, Sun Y. Insights into cardiac conduction system formation provided by HCN4 expression. Trends Cardiovasc Med, 2015, 25(1): 1-9. |
34. | Lepley D, Bormes W, KAYSER K. AN electronic device for accurate identification of the cardiac conduction system. Its development and use in open heart surgery. Am J Surg, 1963, 106: 933-937. |
35. | Bernhard WF, Grass AM. A method for localization of the cardiac conduction system during open-heart surgery. N Engl J Med, 1961, 265: 1079-1083. |
36. | Stuckey JH, Hoffman BF. Open heart surgery. The prevention of injury to the specialized conducting system. Arch Surg, 1962, 85: 224-229. |
37. | Kaiser GA, Waldo AL, Beach PM, et al. Specialized cardiac conduction system. Improved electrophysiologic identification technique at surgery. Arch Surg, 1970, 101(6): 673-676. |
38. | Krongrad E, Malm JR, Bowman FO, et al. Electrophysiological delineation of the specialized A-V conduction system in patients with congenital heart disease. Ⅱ. Delineation of the distal His bundle and the right bundle branch. Circulation, 1974, 49(6): 1232-1238. |
39. | Li J, Inada S, Schneider JE, et al. Three-dimensional computer model of the right atrium including the sinoatrial and atrioventricular nodes predicts classical nodal behaviours. PLoS One, 2014, 9(11): e112547. |
40. | Bordas R, Gillow K, Lou Q, et al. Rabbit-specific ventricular model of cardiac electrophysiological function including specialized conduction system. Prog Biophys Mol Biol, 2011, 107(1): 90-100. |
41. | Stephenson RS, Jones CB, Guerrero R, et al. High-resolution contrast-enhanced micro-computed tomography to identify the cardiac conduction system in congenitally malformed hearts: Valuable insight from a hospital archive. JACC Cardiovasc Imaging, 2018, 11(11): 1706-1712. |
42. | Stephenson RS, Boyett MR, Hart G, et al. Contrast enhanced micro-computed tomography resolves the 3-dimensional morphology of the cardiac conduction system in mammalian hearts. PLoS One, 2012, 7(4): e35299. |
43. | Shinohara G, Morita K, Hoshino M, et al. Three dimensional visualization of human cardiac conduction tissue in whole heart specimens by high-resolution phase-contrast CT imaging using synchrotron radiation. World J Pediatr Congenit Heart Surg, 2016, 7(6): 700-705. |
44. | Kaneko Y, Shinohara G, Hoshino M, et al. Intact imaging of human heart structure using X-ray phase-contrast tomography. Pediatr Cardiol, 2017, 38(2): 390-393. |
45. | Yoshitake S, Kaneko Y, Morita K, et al. Visualization and quantification of the atrioventricular conduction axis in hearts with ventricular septal defect using phase contrast computed tomography. J Thorac Cardiovasc Surg, 2020, 160(2): 490-496. |
46. | Bagdonas S, Zurauskas E, Streckyte G, et al. Spectroscopic studies of the human heart conduction system ex vivo: Implication for optical visualization. J Photochem Photobiol B, 2008, 92(2): 128-134. |
47. | Perk M, Flynn GJ, Gulamhusein S, et al. Laser induced fluorescence identification of sinoatrial and atrioventricular nodal conduction tissue. Pacing Clin Electrophysiol, 1993, 16(8): 1701-1712. |
48. | Venius J, Bagdonas S, Zurauskas E, et al. Visualization of human heart conduction system by means of fluorescence spectroscopy. J Biomed Opt, 2011, 16(10): 107001. |
49. | Huang C, Kaza AK, Hitchcock RW, et al. Identification of nodal tissue in the living heart using rapid scanning fiber-optics confocal microscopy and extracellular fluorophores. Circ Cardiovasc Imaging, 2013, 6(5): 739-746. |
50. | Huang C, Sachse FB, Hitchcock RW, et al. Sensitivity and specificity of cardiac tissue discrimination using fiber-optics confocal microscopy. PLoS One, 2016, 11(1): e0147667. |
51. | Kaza AK, Mondal A, Piekarski B, et al. Intraoperative localization of cardiac conduction tissue regions using real-time fibre-optic confocal microscopy: First in human trial. Eur J Cardiothorac Surg, 2020, 58(2): 261-268. |
52. | Hong G, Lee JC, Robinson JT, et al. Multifunctional in vivo vascular imaging using near-infrared Ⅱ fluorescence. Nat Med, 2012, 18(12): 1841-1846. |
53. | Hu Z, Fang C, Li B, et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-Ⅰ/Ⅱ windows. Nat Biomed Eng, 2020, 4(3): 259-271. |
54. | Pei G, Liu Y, Liu Q, et al. The safety and feasibility of intraoperative near-infrared fluorescence imaging with indocyanine green in thoracoscopic sympathectomy for primary palmar hyperhidrosis. Thorac Cancer, 2020, 11(4): 943-949. |
55. | Kaushal S, McElroy MK, Luiken GA, et al. Fluorophore-conjugated anti-CEA antibody for the intraoperative imaging of pancreatic and colorectal cancer. J Gastrointest Surg, 2008, 12(11): 1938-1950. |
56. | Turner MA, Hollandsworth HM, Nishino H, et al. Fluorescent anti-MUC5AC brightly targets pancreatic cancer in a patient-derived orthotopic xenograft. In Vivo, 2022, 36(1): 57-62. |
57. | Lwin TM, Murakami T, Miyake K, et al. Tumor-specific labeling of pancreatic cancer using a humanized anti-CEA antibody conjugated to a near-infrared fluorophore. Ann Surg Oncol, 2018, 25(4): 1079-1085. |
58. | Goodyer WR, Beyersdorf BM, Duan L, et al. In vivo visualization and molecular targeting of the cardiac conduction system. J Clin Invest, 2022, 132(20): e156955. |
- 1. Titus JL, Daugherty GW, Kirklin JW, et al. Lesions of the atrioventricular conduction system after repair of ventricular septal defect. Relation to heart block. Circulation, 1963, 28: 82-88.
- 2. Liberman L, Silver ES, Chai PJ, et al. Incidence and characteristics of heart block after heart surgery in pediatric patients: A multicenter study. J Thorac Cardiovasc Surg, 2016, 152(1): 197-202.
- 3. Romer AJ, Tabbutt S, Etheridge SP, et al. Atrioventricular block after congenital heart surgery: Analysis from the Pediatric Cardiac Critical Care Consortium. J Thorac Cardiovasc Surg, 2019, 157(3): 1168-1177.
- 4. Anderson JB, Czosek RJ, Knilans TK, et al. Postoperative heart block in children with common forms of congenital heart disease: Results from the KID Database. J Cardiovasc Electrophysiol, 2012, 23(12): 1349-1354.
- 5. van Eif VWW, Stefanovic S, Mohan RA, et al. Gradual differentiation and confinement of the cardiac conduction system as indicated by marker gene expression. Biochim Biophys Acta Mol Cell Res, 2020, 1867(3): 118509.
- 6. Yanni J, Boyett MR, Anderson RH, et al. The extent of the specialized atrioventricular ring tissues. Heart Rhythm, 2009, 6(5): 672-680.
- 7. Atkinson AJ, Logantha SJ, Hao G, et al. Functional, anatomical, and molecular investigation of the cardiac conduction system and arrhythmogenic atrioventricular ring tissue in the rat heart. J Am Heart Assoc, 2013, 2(6): e000246.
- 8. Sánchez-Quintana D, Cabrera JA, Farré J, et al. Sinus node revisited in the era of electroanatomical mapping and catheter ablation. Heart, 2005, 91(2): 189-194.
- 9. Anderson RH, Ho SY, Becker AE. The surgical anatomy of the conduction tissues. Thorax, 1983, 38(6): 408-420.
- 10. Stephenson RS, Atkinson A, Kottas P, et al. High resolution 3-dimensional imaging of the human cardiac conduction system from microanatomy to mathematical modeling. Sci Rep, 2017, 7(1): 7188.
- 11. Elizari MV. The normal variants in the left bundle branch system. J Electrocardiol, 2017, 50(4): 389-399.
- 12. Padala SK, Cabrera JA, Ellenbogen KA. Anatomy of the cardiac conduction system. Pacing Clin Electrophysiol, 2021, 44(1): 15-25.
- 13. Yamamoto M, Dobrzynski H, Tellez J, et al. Extended atrial conduction system characterised by the expression of the HCN4 channel and connexin45. Cardiovasc Res, 2006, 72(2): 271-281.
- 14. Sizarov A, Devalla HD, Anderson RH, et al. Molecular analysis of patterning of conduction tissues in the developing human heart. Circ Arrhythm Electrophysiol, 2011, 4(4): 532-542.
- 15. Anderson RH. The disposition and innervation of atrioventricular ring specialized tissue in rats and rabbits. Journal of anatomy, 1972, 113(Pt 2): 197-211.
- 16. Nooma K, Saga T, Iwanaga J, et al. A novel method with which to visualize the human sinuatrial node: Application for a better understanding of the gross anatomy of this part of the conduction system. Clin Anat, 2020, 33(2): 232-236.
- 17. Cabrera JÁ, Anderson RH, Macías Y, et al. Variable arrangement of the atrioventricular conduction axis within the triangle of Koch: Implications for permanent his bundle pacing. JACC Clin Electrophysiol, 2020, 6(4): 362-377.
- 18. Baruteau AE, Abrams DJ, Ho SY, et al. Cardiac conduction system in congenitally corrected transposition of the great arteries and its clinical relevance. J Am Heart Assoc, 2017, 6(12): e007759.
- 19. Nathan M, Karamichalis JM, Liu H, et al. Surgical technical performance scores are predictors of late mortality and unplanned reinterventions in infants after cardiac surgery. J Thorac Cardiovasc Surg, 2012, 144(5): 1095-1101.
- 20. Akiyama T. Sunao Tawara: Discoverer of the atrioventricular conduction system of the heart. Cardiol J, 2010, 17(4): 428-434.
- 21. Anderson RH, Boyett MR, Dobrzynski H, et al. The anatomy of the conduction system: Implications for the clinical cardiologist. J Cardiovasc Transl Res, 2013, 6(2): 187-196.
- 22. Aschoff L. Referat uber die herzstorungen in ihren beziehungen zu den spezifischen muskelsystem des herzens. Verh Dtsch Pathol Ges, 1910, (14): 3-35.
- 23. Monckeberg JG. Beitrage zur normalen und pathologischen anatomie des herzens. Verh Dtsch Pathol Ges, 1910, (14): 64-71.
- 24. Hara T. Morphological and histochemical studies on the cardiac conduction system of the dog. Arch Histol Jpn, 1967, 28(3): 227-246.
- 25. Remme CA, Verkerk AO, Hoogaars WM, et al. The cardiac sodium channel displays differential distribution in the conduction system and transmural heterogeneity in the murine ventricular myocardium. Basic Res Cardiol, 2009, 104(5): 511-522.
- 26. Alcoléa S, Théveniau-Ruissy M, Jarry-Guichard T, et al. Downregulation of connexin 45 gene products during mouse heart development. Circ Res, 1999, 84(12): 1365-1379.
- 27. Coppen SR, Kodama I, Boyett MR, et al. Connexin45, a major connexin of the rabbit sinoatrial node, is co-expressed with connexin43 in a restricted zone at the nodal-crista terminalis border. J Histochem Cytochem, 1999, 47(7): 907-918.
- 28. Coppen SR, Severs NJ, Gourdie RG. Connexin45 (alpha 6) expression delineates an extended conduction system in the embryonic and mature rodent heart. Dev Genet, 1999, 24(1-2): 82-90.
- 29. Hoogaars WM, Tessari A, Moorman AF, et al. The transcriptional repressor Tbx3 delineates the developing central conduction system of the heart. Cardiovasc Res, 2004, 62(3): 489-499.
- 30. Rentschler S, Vaidya DM, Tamaddon H, et al. Visualization and functional characterization of the developing murine cardiac conduction system. Development, 2001, 128(10): 1785-1792.
- 31. Liang X, Wang G, Lin L, et al. HCN4 dynamically marks the first heart field and conduction system precursors. Circ Res, 2013, 113(4): 399-407.
- 32. Harris BS, Baicu CF, Haghshenas N, et al. Remodeling of the peripheral cardiac conduction system in response to pressure overload. Am J Physiol Heart Circ Physiol, 2012, 302(8): H1712-H1725.
- 33. Liang X, Evans SM, Sun Y. Insights into cardiac conduction system formation provided by HCN4 expression. Trends Cardiovasc Med, 2015, 25(1): 1-9.
- 34. Lepley D, Bormes W, KAYSER K. AN electronic device for accurate identification of the cardiac conduction system. Its development and use in open heart surgery. Am J Surg, 1963, 106: 933-937.
- 35. Bernhard WF, Grass AM. A method for localization of the cardiac conduction system during open-heart surgery. N Engl J Med, 1961, 265: 1079-1083.
- 36. Stuckey JH, Hoffman BF. Open heart surgery. The prevention of injury to the specialized conducting system. Arch Surg, 1962, 85: 224-229.
- 37. Kaiser GA, Waldo AL, Beach PM, et al. Specialized cardiac conduction system. Improved electrophysiologic identification technique at surgery. Arch Surg, 1970, 101(6): 673-676.
- 38. Krongrad E, Malm JR, Bowman FO, et al. Electrophysiological delineation of the specialized A-V conduction system in patients with congenital heart disease. Ⅱ. Delineation of the distal His bundle and the right bundle branch. Circulation, 1974, 49(6): 1232-1238.
- 39. Li J, Inada S, Schneider JE, et al. Three-dimensional computer model of the right atrium including the sinoatrial and atrioventricular nodes predicts classical nodal behaviours. PLoS One, 2014, 9(11): e112547.
- 40. Bordas R, Gillow K, Lou Q, et al. Rabbit-specific ventricular model of cardiac electrophysiological function including specialized conduction system. Prog Biophys Mol Biol, 2011, 107(1): 90-100.
- 41. Stephenson RS, Jones CB, Guerrero R, et al. High-resolution contrast-enhanced micro-computed tomography to identify the cardiac conduction system in congenitally malformed hearts: Valuable insight from a hospital archive. JACC Cardiovasc Imaging, 2018, 11(11): 1706-1712.
- 42. Stephenson RS, Boyett MR, Hart G, et al. Contrast enhanced micro-computed tomography resolves the 3-dimensional morphology of the cardiac conduction system in mammalian hearts. PLoS One, 2012, 7(4): e35299.
- 43. Shinohara G, Morita K, Hoshino M, et al. Three dimensional visualization of human cardiac conduction tissue in whole heart specimens by high-resolution phase-contrast CT imaging using synchrotron radiation. World J Pediatr Congenit Heart Surg, 2016, 7(6): 700-705.
- 44. Kaneko Y, Shinohara G, Hoshino M, et al. Intact imaging of human heart structure using X-ray phase-contrast tomography. Pediatr Cardiol, 2017, 38(2): 390-393.
- 45. Yoshitake S, Kaneko Y, Morita K, et al. Visualization and quantification of the atrioventricular conduction axis in hearts with ventricular septal defect using phase contrast computed tomography. J Thorac Cardiovasc Surg, 2020, 160(2): 490-496.
- 46. Bagdonas S, Zurauskas E, Streckyte G, et al. Spectroscopic studies of the human heart conduction system ex vivo: Implication for optical visualization. J Photochem Photobiol B, 2008, 92(2): 128-134.
- 47. Perk M, Flynn GJ, Gulamhusein S, et al. Laser induced fluorescence identification of sinoatrial and atrioventricular nodal conduction tissue. Pacing Clin Electrophysiol, 1993, 16(8): 1701-1712.
- 48. Venius J, Bagdonas S, Zurauskas E, et al. Visualization of human heart conduction system by means of fluorescence spectroscopy. J Biomed Opt, 2011, 16(10): 107001.
- 49. Huang C, Kaza AK, Hitchcock RW, et al. Identification of nodal tissue in the living heart using rapid scanning fiber-optics confocal microscopy and extracellular fluorophores. Circ Cardiovasc Imaging, 2013, 6(5): 739-746.
- 50. Huang C, Sachse FB, Hitchcock RW, et al. Sensitivity and specificity of cardiac tissue discrimination using fiber-optics confocal microscopy. PLoS One, 2016, 11(1): e0147667.
- 51. Kaza AK, Mondal A, Piekarski B, et al. Intraoperative localization of cardiac conduction tissue regions using real-time fibre-optic confocal microscopy: First in human trial. Eur J Cardiothorac Surg, 2020, 58(2): 261-268.
- 52. Hong G, Lee JC, Robinson JT, et al. Multifunctional in vivo vascular imaging using near-infrared Ⅱ fluorescence. Nat Med, 2012, 18(12): 1841-1846.
- 53. Hu Z, Fang C, Li B, et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-Ⅰ/Ⅱ windows. Nat Biomed Eng, 2020, 4(3): 259-271.
- 54. Pei G, Liu Y, Liu Q, et al. The safety and feasibility of intraoperative near-infrared fluorescence imaging with indocyanine green in thoracoscopic sympathectomy for primary palmar hyperhidrosis. Thorac Cancer, 2020, 11(4): 943-949.
- 55. Kaushal S, McElroy MK, Luiken GA, et al. Fluorophore-conjugated anti-CEA antibody for the intraoperative imaging of pancreatic and colorectal cancer. J Gastrointest Surg, 2008, 12(11): 1938-1950.
- 56. Turner MA, Hollandsworth HM, Nishino H, et al. Fluorescent anti-MUC5AC brightly targets pancreatic cancer in a patient-derived orthotopic xenograft. In Vivo, 2022, 36(1): 57-62.
- 57. Lwin TM, Murakami T, Miyake K, et al. Tumor-specific labeling of pancreatic cancer using a humanized anti-CEA antibody conjugated to a near-infrared fluorophore. Ann Surg Oncol, 2018, 25(4): 1079-1085.
- 58. Goodyer WR, Beyersdorf BM, Duan L, et al. In vivo visualization and molecular targeting of the cardiac conduction system. J Clin Invest, 2022, 132(20): e156955.
Journal type citation(29)
1. | 詹丽莉,李兰,张黎,肖珊,黄明君. 首台手术准备流程再造在日间手术管理中的应用效果分析. 华西医学. 2025(02): 250-255 . ![]() | |
2. | 杨玉琼,李明轩,谭欣. 持续质量改进在降低妇科日间手术当日取消率中的应用. 华西医学. 2025(02): 245-249 . ![]() | |
3. | 刘燕丹,刘娟,王志粉,周立涛,杨晓钟. 基于医疗资源整合的妇产门诊日间手术中心建设的应用研究. 现代医院管理. 2024(01): 35-38 . ![]() | |
4. | 陈炜. 中国日间手术质量控制体系的建设与发展. 肿瘤. 2024(02): 110-116 . ![]() | |
5. | 苏晓洁,赵洁,陈振毅,吴彦,林文斌,肖鹏飞,纪阴心,张强. 基于运营视角的日间手术管理实践与探讨. 医院管理论坛. 2024(12): 20-22+66 . ![]() | |
6. | 薛超莉,高巨,薛海霞,徐道亮,束余声. 基于“飞常准”的个人数字助理信息系统在三级甲等医院手术运营管理中的应用研究. 华西医学. 2023(01): 91-97 . ![]() | |
7. | 张栋邦,胡森,多杰才让,景钦香. 快速康复外科理念在显微镜精索静脉结扎术日间病房的临床应用. 国际泌尿系统杂志. 2023(01): 118-121 . ![]() | |
8. | 余琼,冯林美. 手术室日间手术中心的运转及效果评价. 中国当代医药. 2023(03): 149-151 . ![]() | |
9. | 孙佳璐,严越,王中鹏,孙辉,马旭东. 基于全国医疗质量抽样调查数据的日间手术发展分析. 中国医院管理. 2023(02): 49-52 . ![]() | |
10. | 赵婷婷,尚亮,田英丽,王晓雪,吴志勇,王萍,牛玉光. 部队某大型综合医院日间医疗管理运行实践. 华西医学. 2023(02): 180-184 . ![]() | |
11. | 沈静,李雪丽. 基于Donabedian三维质量评价模式应用于DSA患者日间手术管理中的效果观察. 基层医学论坛. 2023(15): 20-22 . ![]() | |
12. | 普丽,王福科. 互联网+预康复护理在关节镜肩袖损伤修复术患者中的应用. 云南医药. 2023(03): 111-113 . ![]() | |
13. | 魏薇,孙振涛,何士凤,张婉月,陈赛,张洁,侯雅欣,汤西玲. 基于双向转诊制度的日间手术探索与实践. 华西医学. 2022(02): 274-277 . ![]() | |
14. | 李海鹏,葛锋. 日间手术存在的问题与优化策略探讨. 中国医院管理. 2022(06): 64-66 . ![]() | |
15. | 王彦霁,刘洋,骆洪梅,戴燕. 日间手术患者满意度评价量表的编制. 华西医学. 2021(02): 225-229 . ![]() | |
16. | 石峰华,黄晓萱,刘倩,刘蔚东,莫洋. 日间手术信息化平台建设与实践. 华西医学. 2021(02): 238-243 . ![]() | |
17. | 窦宁,谭晶晶,李子林,王少玮,左健. 动脉导管未闭介入治疗日间手术的短期临床结果. 临床外科杂志. 2021(02): 178-180 . ![]() | |
18. | 赵洁,陈振毅,张美琴,赵敏,吴彦,纪阴心,许惠春,张强. 基于闭环管理理念的日间手术管理信息系统设计与实践. 护理实践与研究. 2021(14): 2188-2192 . ![]() | |
19. | 张春芳,高阳,张恒,程远大,周燕武,李曦哲,刘元奇,王锷,翁莹琪,王宝嘉,曾蔚,李小燕,莫洋. 机器人胸外科日间手术临床实践专家共识. 中国内镜杂志. 2021(08): 10-20 . ![]() | |
20. | 黄怡,朱宏颖,程柳榕,曾正慧,蔡秋,柯雅娟. 日间手术管理模式对乳腺良性病变患者住院情况及医疗资源利用效率的影响. 临床与病理杂志. 2021(09): 2133-2138 . ![]() | |
21. | 张丽红,詹申,肖光辉,王玉柱. 血液透析血管通路日间手术临床实践建议. 临床肾脏病杂志. 2021(09): 705-708 . ![]() | |
22. | 肖文峰,高曙光. 关节镜日间手术临床实践专家共识. 中国内镜杂志. 2020(06): 1-7 . ![]() | |
23. | 李文静,程芳兰,郑楠,杨静,张慧文,许丽丽,李渝红. 日间手术患者护理管理模式及施行效果探究. 中国卫生标准管理. 2019(08): 100-102 . ![]() | |
24. | 蒋灿华,翦新春,张志愿,郑家伟,石冰,刘彦普,何悦,彭歆,尚政军,韩新光,刘蔚东,莫洋,郭峰,程智刚,陈传俊,龚忠诚,金武龙,张世周,袁荣涛,严奉国,李鹏程,张胜,高兴,陈洁. 口腔颌面外科日间手术中国专家共识. 中国口腔颌面外科杂志. 2019(05): 385-390 . ![]() | |
25. | 邱瑜,缪品至,沈娟,姜春来. 延续护理模式在手外科日间手术患者中的应用研究. 交通医学. 2019(05): 526-527+531 . ![]() | |
26. | 直肠肛门日间手术临床实践指南(2019版). 中国普通外科杂志. 2019(11): 1322-1335 . ![]() | |
27. | 李新利,李海涛. 矿山救护队伍运营管理与健康发展模式. 中国金属通报. 2019(11): 234-235 . ![]() | |
28. | 直肠肛门日间手术临床实践指南(2019版). 中华胃肠外科杂志. 2019(11): 1001-1002-1003-1004-1005-1006-1007-1008-1009-1010-1011 . ![]() | |
29. | 熊云,肖惠明,林菁. 全身麻醉斜视矫正术日间手术模式的创建与护理管理. 眼科学报. 2019(04): 260-263 . ![]() |
Other types of references(4)
1. | 唐甜. 日间手术病房热环境及患者术前术后热感觉差异研究[D]. 华侨大学. 2023. ![]() | |
2. | 孙菲. 新疆某三甲医院急性心肌梗死患者住院费用及病例组合研究[D]. 新疆医科大学. 2021. ![]() | |
3. | 石力文. 日间手术患者术后中重度疼痛预测模型的构建和验证[D]. 中国人民解放军空军军医大学. 2024. ![]() |