1. |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
|
2. |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin, 2020, 70(1): 7-30.
|
3. |
Travis WD, Brambilla E, Noguchi M, et al. International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol, 2011, 6(2): 244-285.
|
4. |
Myers DJ, Wallen JM. Lung adenocarcinoma. Treasure Island (FL): StatPearls Publishing, 2023. https://www.ncbi.nlm.nih.gov/books/NBK519578/. Accessed on 2023-03-25.
|
5. |
Moreira AL, Ocampo PSS, Xia Y, et al. A grading system for invasive pulmonary adenocarcinoma: A proposal from the International Association for the Study of Lung Cancer Pathology Committee. J Thorac Oncol, 2020, 15(10): 1599-1610.
|
6. |
Calvayrac O, Pradines A, Pons E, et al. Molecular biomarkers for lung adenocarcinoma. Eur Respir J, 2017, 49(4): 1601734.
|
7. |
Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature, 2014, 511(7511): 543-550.
|
8. |
Chalela R, Curull V, Enríquez C, et al. Lung adenocarcinoma: From molecular basis to genome-guided therapy and immunotherapy. J Thorac Dis, 2017, 9(7): 2142-2158.
|
9. |
Lin JJ, Cardarella S, Lydon CA, et al. Five-year survival in EGFR-mutant metastatic lung adenocarcinoma treated with EGFR-TKIs. J Thorac Oncol, 2016, 11(4): 556-565.
|
10. |
Okayama H, Kohno T, Ishii Y, et al. Identification of genes upregulated in ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas. Cancer Res, 2012, 72(1): 100-111.
|
11. |
Sholl LM, Sun H, Butaney M, et al. ROS1 immunohistochemistry for detection of ROS1-rearranged lung adenocarcinomas. Am J Surg Pathol, 2013, 37(9): 1441-1449.
|
12. |
Villaruz LC, Socinski MA, Abberbock S, et al. Clinicopathologic features and outcomes of patients with lung adenocarcinomas harboring BRAF mutations in the Lung Cancer Mutation Consortium. Cancer, 2015, 121(3): 448-456.
|
13. |
Skoulidis F, Byers LA, Diao L, et al. Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities. Cancer Discov, 2015, 5(8): 860-877.
|
14. |
Olmedo ME, Cervera R, Cabezon-Gutierrez L, et al. New horizons for uncommon mutations in non-small cell lung cancer: BRAF, KRAS, RET, MET, NTRK, HER2. World J Clin Oncol, 2022, 13(4): 276-286.
|
15. |
Jiang Y, Yang M, Wang S, et al. Emerging role of deep learning-based artificial intelligence in tumor pathology. Cancer Commun (Lond), 2020, 40(4): 154-166.
|
16. |
Liu Y, Wang H, Gu Y, et al. Image classification toward lung cancer recognition by learning deep quality model. J Vis Commun Image Represent, 2019, 63: 102570.
|
17. |
Kirienko M, Sollini M, Corbetta M, et al. Radiomics and gene expression profile to characterise the disease and predict outcome in patients with lung cancer. Eur J Nucl Med Mol Imaging, 2021, 48(11): 3643-3655.
|
18. |
Sun GZ, Zhao TW. Lung adenocarcinoma pathology stages related gene identification. Math Biosci Eng, 2019, 17(1): 737-746.
|
19. |
Jia TY, Xiong JF, Li XY, et al. Identifying EGFR mutations in lung adenocarcinoma by noninvasive imaging using radiomics features and random forest modeling. Eur Radiol, 2019, 29(9): 4742-4750.
|
20. |
Pinheiro G, Pereira T, Dias C, et al. Identifying relationships between imaging phenotypes and lung cancer-related mutation status: EGFR and KRAS. Sci Rep, 2020, 10(1): 3625.
|
21. |
Zhang T, Xu Z, Liu G, et al. Simultaneous identification of EGFR, KRAS, ERBB2, and TP53 mutations in patients with non-small cell lung cancer by machine learning-derived three-dimensional radiomics. Cancers (Basel), 2021, 13(8): 1814.
|
22. |
Le NQK, Kha QH, Nguyen VH, et al. Machine learning-based radiomics signatures for EGFR and KRAS mutations prediction in non-small-cell lung cancer. Int J Mol Sci, 2021, 22(17): 9254.
|
23. |
Yuan F, Lu L, Zou Q. Analysis of gene expression profiles of lung cancer subtypes with machine learning algorithms. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(8): 165822.
|
24. |
Gu Q, Feng Z, Liang Q, et al. Machine learning-based radiomics strategy for prediction of cell proliferation in non-small cell lung cancer. Eur J Radiol, 2019, 118: 32-37.
|
25. |
McWilliams A, Tammemagi MC, Mayo JR, et al. Probability of cancer in pulmonary nodules detected on first screening CT. N Engl J Med, 2013, 369(10): 910-919.
|
26. |
van Riel SJ, Ciompi F, Winkler Wille MM, et al. Malignancy risk estimation of pulmonary nodules in screening CTs: Comparison between a computer model and human observers. PLoS One, 2017, 12(11): e0185032.
|
27. |
Winkler Wille MM, van Riel SJ, Saghir Z, et al. Predictive accuracy of the pancan lung cancer risk prediction model-external validation based on CT from the danish lung cancer screening trial. Eur Radiol, 2015, 25(10): 3093-3099.
|
28. |
Kriegsmann M, Casadonte R, Kriegsmann J, et al. Reliable entity subtyping in non-small cell lung cancer by matrix-assisted laser desorption/ionization imaging mass spectrometry on formalin-fixed paraffin-embedded tissue specimens. Mol Cell Proteomics, 2016, 15(10): 3081-3089.
|
29. |
Hong D, Xu K, Zhang L, et al. Radiomics signature as a predictive factor for EGFR mutations in advanced lung adenocarcinoma. Front Oncol, 2020, 10: 28.
|
30. |
Huang S, Cai N, Pacheco PP, et al. Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genomics Proteomics, 2018, 15(1): 41-51.
|
31. |
He R, Yang X, Li T, et al. A machine learning-based predictive model of epidermal growth factor mutations in lung adenocarcinomas. Cancers (Basel), 2022, 14(19): 4664.
|
32. |
Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med, 2018, 24(10): 1559-1567.
|
33. |
Yu KH, Wang F, Berry GJ, et al. Classifying non-small cell lung cancer types and transcriptomic subtypes using convolutional neural networks. J Am Med Inform Assoc, 2020, 27(5): 757-769.
|
34. |
Mobadersany P, Yousefi S, Amgad M, et al. Predicting cancer outcomes from histology and genomics using convolutional networks. Proc Natl Acad Sci U S A, 2018, 115(13): E2970-E2979.
|
35. |
Gertych A, Swiderska-Chadaj Z, Ma Z, et al. Convolutional neural networks can accurately distinguish four histologic growth patterns of lung adenocarcinoma in digital slides. Sci Rep, 2019, 9(1): 1483.
|
36. |
Wei JW, Tafe LJ, Linnik YA, et al. Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks. Sci Rep, 2019, 9(1): 3358.
|
37. |
Wang S, Rong R, Yang DM, et al. Computational staining of pathology images to study the tumor microenvironment in lung cancer. Cancer Res, 2020, 80(10): 2056-2066.
|
38. |
Chen CL, Chen CC, Yu WH, et al. An annotation-free whole-slide training approach to pathological classification of lung cancer types using deep learning. Nat Commun, 2021, 12(1): 1193.
|
39. |
Khosravi P, Kazemi E, Imielinski M, et al. Deep convolutional neural networks enable discrimination of heterogeneous digital pathology images. EBioMedicine, 2018, 27: 317-328.
|
40. |
Li Y, Wu X, Yang P, et al. Machine learning for lung cancer diagnosis, treatment, and prognosis. Genomics Proteomics Bioinformatics, 2022, 20(5): 850-866.
|