1. |
Thuss-Patience P, Stein A. Immunotherapy in squamous cell cancer of the esophagus. Curr Oncol, 2022, 29(4): 2461-2471.
|
2. |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
|
3. |
Eyck BM, van Lanschot JJB, Hulshof MCCM, et al. Ten-year outcome of neoadjuvant chemoradiotherapy plus surgery for esophageal cancer: The randomized controlled CROSS trial. J Clin Oncol, 2021, 39(18): 1995-2004.
|
4. |
Mao YS, Gao SG, Wang Q, et al. Analysis of a registry database for esophageal cancer from high-volume centers in China. Dis Esophagus, 2020, 33(8): doz091.
|
5. |
He J, Chen WQ, Li ZS, et al. China guideline for the screening, early detection and early treatment of esophageal cancer (2022, Beijing). Zhonghua Zhong Liu Za Zhi, 2022, 44(6): 491-522.
|
6. |
Ohmori M, Ishihara R, Aoyama K, et al. Endoscopic detection and differentiation of esophageal lesions using a deep neural network. Gastrointest Endosc, 2020, 91(2): 301-309.
|
7. |
Gillies RJ, Schabath MB. Radiomics improves cancer screening and early detection. Cancer Epidemiol Biomarkers Prev, 2020, 29(12): 2556-2567.
|
8. |
Chen W, Zheng R, Zhang S, et al. Cancer incidence and mortality in China, 2013. Cancer Lett, 2017, 401: 63-71.
|
9. |
Hamet P, Tremblay J. Artificial intelligence in medicine. Metabolism, 2017, 69S: S36-S40.
|
10. |
Patel V, Khan MN, Shrivastava A, et al. Artificial intelligence applied to gastrointestinal diagnostics: A review. J Pediatr Gastroenterol Nutr, 2020, 70(1): 4-11.
|
11. |
Syed T, Doshi A, Guleria S, et al. Artificial intelligence and its role in identifying esophageal neoplasia. Dig Dis Sci, 2020, 65(12): 3448-3455.
|
12. |
Mehrer J, Spoerer CJ, Jones EC, et al. An ecologically motivated image dataset for deep learning yields better models of human vision. Proc Natl Acad Sci U S A, 2021, 118(8): e2011417118.
|
13. |
Feng Y, Liang Y, Li P, et al. Artificial intelligence assisted detection of superficial esophageal squamous cell carcinoma in white-light endoscopic images by using a generalized system. Discov Oncol, 2023, 14(1): 73.
|
14. |
Tajiri A, Ishihara R, Kato Y, et al. Utility of an artificial intelligence system for classification of esophageal lesions when simulating its clinical use. Sci Rep, 2022, 12(1): 6677.
|
15. |
Inoue H, Kaga M, Ikeda H, et al. Magnification endoscopy in esophageal squamous cell carcinoma: A review of the intrapapillary capillary loop classifification. Ann Gastroenterol, 2015, 28(1): 41-48.
|
16. |
Oyama T, Ishihara R, Takeuchi M, et al. Usefulness of Japan Esophageal Society classification of magnified endoscopy for the diagnosis of superficial esophageal squamous cell carcinoma. Gastrointest Endosc, 2012, 75(Suppl): AB456.
|
17. |
Yuan XL, Liu W, Liu Y, et al. Artificial intelligence for diagnosing microvessels of precancerous lesions and superficial esophageal squamous cell carcinomas: A multicenter study. Surg Endosc, 2022, 36(11): 8651-8662.
|
18. |
Shimamoto Y, Ishihara R, Kato Y, et al. Real-time assessment of video images for esophageal squamous cell carcinoma invasion depth using artificial intelligence. J Gastroenterol, 2020, 55(11): 1037-1045.
|
19. |
Guo L, Xiao X, Wu C, et al. Real-time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinoma using a deep learning model (with videos). Gastrointest Endosc, 2020, 91(1): 41-51.
|
20. |
Liu W, Yuan X, Guo L, et al. Artificial intelligence for detecting and delineating margins of early ESCC under WLI endoscopy. Clin Transl Gastroenterol, 2022, 13(1): e00433.
|
21. |
Yuan XL, Zeng XH, Liu W, et al. Artificial intelligence for detecting and delineating the extent of superficial esophageal squamous cell carcinoma and precancerous lesions under narrow-band imaging (with video). Gastrointest Endosc, 2023, 97(4): 664-672.
|
22. |
Tani Y, Ishihara R, Inoue T, et al. A single-center prospective study evaluating the usefulness of artificial intelligence for the diagnosis of esophageal squamous cell carcinoma in a real-time setting. BMC Gastroenterol, 2023, 23(1): 184.
|
23. |
Rustgi AK, El-Serag HB. Esophageal carcinoma. N Engl J Med, 2014, 371(26): 2499-2509.
|
24. |
Spadaccini M, Vespa E, Chandrasekar VT, et al. Advanced imaging and artificial intelligence for Barrett's esophagus: What we should and soon will do. World J Gastroenterol, 2022, 28(11): 1113-1122.
|
25. |
Madabhushi A, Toro P, Willis JE. Artificial intelligence in surveillance of Barrett's esophagus. Cancer Res, 2021, 81(13): 3446-3448.
|
26. |
Struyvenberg MR, de Groof AJ, Fonollà R, et al. Prospective development and validation of a volumetric laser endomicroscopy computer algorithm for detection of Barrett's neoplasia. Gastrointest Endosc, 2021, 93(4): 871-879.
|
27. |
Tan JL, Chinnaratha MA, Woodman R, et al. Diagnostic accuracy of artificial intelligence (AI) to detect early neoplasia in Barrett's esophagus: A non-comparative systematic review and meta-analysis. Front Med (Lausanne), 2022, 22: 890720.
|
28. |
de Groof J, van der Sommen F, van der Putten J, et al. The Argos project: The development of a computer-aided detection system to improve detection of Barrett's neoplasia on white light endoscopy. United European Gastroenterol J, 2019, 7(4): 538-547.
|
29. |
Hashimoto R, Requa J, Dao T, et al. Artificial intelligence using convolutional neural networks for real-time detection of early esophageal neoplasia in Barrett's esophagus (with video). Gastrointest Endosc, 2020, 91(6): 1264-1271.
|
30. |
Ebigbo A, Mendel R, Probst A, et al. Multimodal imaging for detection and segmentation of Barrett's esophagus-related neoplasia using artificial intelligence. Endoscopy, 2022, 54(10): E587.
|
31. |
Ebigbo A, Mendel R, Probst A, et al. Real-time use of artificial intelligence in the evaluation of cancer in Barrett's oesophagus. Gut, 2020, 69(4): 615-616.
|
32. |
Ali S, Bailey A, Ash S, et al. A pilot study on automatic three-dimensional quantification of Barrett's esophagus for risk stratification and therapy monitoring. Gastroenterology, 2021, 161(3): 865-878.
|
33. |
Pan W, Li X, Wang W, et al. Identification of Barrett's esophagus in endoscopic images using deep learning. BMC Gastroenterol, 2021, 21(1): 479.
|
34. |
Qumseya BJ, Brown J, Abraham M, et al. Diagnostic performance of EUS in predicting advanced cancer among patients with Barrett's esophagus and high-grade dysplasia/early adenocarcinoma: Systematic review and meta-analysis. Gastrointest Endosc, 2015, 81(4): 865-874.
|
35. |
Ebigbo A, Mendel R, Rückert T, et al. Endoscopic prediction of submucosal invasion in Barrett's cancer with the use of artificial intelligence: A pilot study. Endoscopy, 2021, 53(9): 878-883.
|
36. |
Ebigbo A, Mendel R, Probst A, et al. Computer-aided diagnosis using deep learning in the evaluation of early oesophageal adenocarcinoma. Gut, 2019, 68(7): 1143-1145.
|
37. |
Hussein M, González-Bueno Puyal J, Lines D, et al. A new artificial intelligence system successfully detects and localises early neoplasia in Barrett's esophagus by using convolutional neural networks. United European Gastroenterol J, 2022, 10(6): 528-537.
|
38. |
Hasegawa S, Yoshikawa T, Cho H, et al. Is adenocarcinoma of the esophagogastric junction different between Japan and western countries? The incidence and clinicopathological features at a Japanese high-volume cancer center. World J Surg, 2009, 33(1): 95-103.
|
39. |
Iwagami H, Ishihara R, Aoyama K, et al. Artificial intelligence for the detection of esophageal and esophagogastric junctional adenocarcinoma. J Gastroenterol Hepatol, 2021, 36(1): 131-136.
|
40. |
Liu H, Ren H, Wu Z, et al. CT radiomics facilitates more accurate diagnosis of COVID-19 pneumonia: Compared with CO-RADS. J Transl Med, 2021, 19(1): 29.
|
41. |
Sung YS, Park B, Park HJ, et al. Radiomics and deep learning in liver diseases. J Gastroenterol Hepatol, 2021, 36(3): 561-568.
|
42. |
Jiang C, Luo Y, Yuan J, et al. CT-based radiomics and machine learning to predict spread through air space in lung adenocarcinoma. Eur Radiol, 2020, 30(7): 4050-4057.
|
43. |
Bibault JE, Giraud P, Housset M, et al. Deep learning and radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer. Sci Rep, 2018, 8(1): 12611.
|
44. |
Min BH, Yang JW, Min YW, et al. Nomogram for prediction of lymph node metastasis in patients with superficial esophageal squamous cell carcinoma. J Gastroenterol Hepatol, 2020, 35(6): 1009-1015.
|
45. |
Zheng H, Tang H, Wang H, et al. Nomogram to predict lymph node metastasis in patients with early oesophageal squamous cell carcinoma. Br J Surg, 2018, 105(11): 1464-1470.
|
46. |
Zhang W, Chen H, Zhang G, et al. A nomogram for predicting lymph node metastasis in superficial esophageal squamous cell carcinoma. J Biomed Res, 2021, 35(5): 361-370.
|
47. |
Tan X, Ma Z, Yan L, et al. Radiomics nomogram outperforms size criteria in discriminating lymph node metastasis in resectable esophageal squamous cell carcinoma. Eur Radiol, 2019, 29(1): 392-400.
|
48. |
Zhang C, Shi Z, Kalendralis P, et al. Prediction of lymph node metastases using pre-treatment PET radiomics of the primary tumour in esophageal adenocarcinoma: An external validation study. Br J Radiol, 2021, 94(1118): 20201042.
|
49. |
Jin X, Zheng X, Chen D, et al. Prediction of response after chemoradiation for esophageal cancer using a combination of dosimetry and CT radiomics. Eur Radiol, 2019, 29(11): 6080-6088.
|
50. |
Larue RTHM, Klaassen R, Jochems A, et al. Pre-treatment CT radiomics to predict 3-year overall survival following chemoradiotherapy of esophageal cancer. Acta Oncol, 2018, 57(11): 1475-1481.
|
51. |
Ypsilantis PP, Siddique M, Sohn HM, et al. Predicting response to neoadjuvant chemotherapy with PET imaging using convolutional neural networks. PLoS One, 2015, 10(9): e0137036.
|
52. |
van Rossum PS, Fried DV, Zhang L, et al. The incremental value of subjective and quantitative assessment of 18F-FDG PET for the prediction of pathologic complete response to preoperative chemoradiotherapy in esophageal cancer. J Nucl Med, 2016, 57(5): 691-700.
|
53. |
Foley KG, Hills RK, Berthon B, et al. Development and validation of a prognostic model incorporating texture analysis derived from standardised segmentation of PET in patients with oesophageal cancer. Eur Radiol, 2018, 28(1): 428-436.
|
54. |
Qu J, Shen C, Qin J, et al. The MR radiomic signature can predict preoperative lymph node metastasis in patients with esophageal cancer. Eur Radiol, 2019, 29(2): 906-914.
|
55. |
Hou Z, Li S, Ren W, et al. Radiomic analysis in T2W and SPAIR T2W MRI: Predict treatment response to chemoradiotherapy in esophageal squamous cell carcinoma. J Thorac Dis, 2018, 10(4): 2256-2267.
|
56. |
Guo YN, Tian DP, Gong QY, et al. Perineural invasion is a better prognostic indicator than lymphovascular invasion and a potential adjuvant therapy indicator for pN0M0 esophageal squamous cell carcinoma. Ann Surg Oncol, 2020, 27(11): 4371-4381.
|
57. |
Wang C, Wang J, Chen Z, et al. Immunohistochemical prognostic markers of esophageal squamous cell carcinoma: A systematic review. Chin J Cancer, 2017, 36(1): 65.
|
58. |
Tomita N, Abdollahi B, Wei J, et al. Attention-based deep neural networks for detection of cancerous and precancerous esophagus tissue on histopathological slides. JAMA Netw Open, 2019, 2(11): e1914645.
|
59. |
Kouzu K, Nearchou IP, Kajiwara Y, et al. Deep-learning-based classification of desmoplastic reaction on H&E predicts poor prognosis in oesophageal squamous cell carcinoma. Histopathology, 2022, 81(2): 255-263.
|