1. |
Singh AB, Sharma A, Dhawan P. Claudin family of proteins and cancer: an overview. J Oncol, 2010, 2010: 541957.
|
2. |
Li X, Iida M, Tada M, et al. Development of an anti-claudin-3 and-4 bispecific monoclonal antibody for cancer diagnosis and therapy. J Pharmacol Exp Ther, 2014, 351(1): 206-213.
|
3. |
Gao Z, McClane BA. Use of Clostridium perfringens Enterotoxin and the Enterotoxin Receptor-Binding Domain (C-CPE) for Cancer Treatment: Opportunities and Challenges. J Toxicol, 2012, 2012: 981626.
|
4. |
Nagase S, Doyama R, Yagi K, et al. Recent advances in claudin-targeting technology. Biol Pharm Bull, 2013, 36(5): 708-714.
|
5. |
Bos J, Smithee L, McClane B, et al. Fatal necrotizing colitis following a foodborne outbreak of enterotoxigenic Clostridium perfringens type A infection. Clin Infect Dis, 2005, 40(10): e78-e83.
|
6. |
Kitadokoro K, Nishimura K, Kamitani S, et al. Crystal structure of Clostridium perfringens enterotoxin displays features of beta-pore-forming toxins. J Biol Chem, 2011, 286(22): 19549-19555.
|
7. |
Kojima T, Kyuno D, Sawada N. Targeting claudin-4 in human pancreatic cancer. Expert Opin Ther Targets, 2012, 16(9): 881-887.
|
8. |
Yuan X, Lin X, Manorek G, et al. Recombinant CPE fused to tumor necrosis factor targets human ovarian cancer cells expressing the claudin-3 and claudin-4 receptors. Mol Cancer Ther, 2009, 8(7): 1906-1915.
|
9. |
Saeki R, Kondoh M, Kakutani H, et al. A novel tumor-targeted therapy using a claudin-4-targeting molecule. Mol Pharmacol, 2009, 76(4): 918-926.
|
10. |
Smedley JG, 3rd, Uzal FA, McClane BA. Identification of a prepore large-complex stage in the mechanism of action of Clostridium perfringens enterotoxin. Infect Immun, 2007, 75(5): 2381-2390.
|
11. |
Robertson SL, Smedley JG 3rd, Singh U, et al. Compositional and stoichiometric analysis of Clostridium perfringens enterotoxin complexes in Caco-2 cells and claudin 4 fibroblast transfectants. Cell Microbiol, 2007, 9(11): 2734-2755.
|
12. |
Lin X, Shang X, Manorek G, et al. Regulation of the epithelial-mesenchymal transition by claudin-3 and claudin-4. PLoS One, 2013, 8(6): e67496.
|
13. |
Van Itallie CM, Anderson JM. Architecture of tight junctions and principles of molecular composition. Semin Cell Dev Biol, 2014, 36C: 157-165.
|
14. |
Van Itallie CM, Anderson JM. Claudin interactions in and out of the tight junction. Tissue Barriers, 2013, 1(3): e25247.
|
15. |
Ding L, Lu Z, Lu Q, et al. The claudin family of proteins in human malignancy: a clinical perspective. Cancer Manag Res, 2013, 5: 367-375.
|
16. |
Swisshelm K, Machl A, Planitzer S, et al. SEMP1, a senescence-associated cDNA isolated from human mammary epithelial cells, is a member of an epithelial membrane protein superfamily. Gene, 1999, 226(2): 285-295.
|
17. |
Kominsky SL. Claudins: emerging targets for cancer therapy. Expert Rev Mol Med, 2006, 8(18): 1-11.
|
18. |
Singh AB, Harris RC. Epidermal growth factor receptor activation differentially regulates claudin expression and enhances transepi-thelial resistance in Madin-Darby canine kidney cells. J Biol Chem, 2004, 279(5): 3543-3552.
|
19. |
Kominsky SL, Argani P, Korz D, et al. Loss of the tight junction protein claudin-7 correlates with histological grade in both ductal carcinoma in situ and invasive ductal carcinoma of the breast. Oncogene, 2003, 22(13): 2021-2033.
|
20. |
Michl P, Barth C, Buchholz M, et al. Claudin-4 expression decreases invasiveness and metastatic potential of pancreatic cancer. Cancer Res, 2003, 63(19): 6265-6271.
|
21. |
Tsutsumi K, Sato N, Tanabe R, et al. Claudin-4 expression predicts survival in pancreatic ductal adenocarcinoma. Ann Surg Oncol, 2012, 19 Suppl 3: S491-S499.
|
22. |
Dhawan P, Singh AB, Deane NG, et al. Claudin-1 regulates cellular transformation and metastatic behavior in colon cancer. J Clin Invest, 2005, 115(7): 1765-1776.
|
23. |
Agarwal R, D'Souza T, Morin PJ. Claudin-3 and claudin-4 expression in ovarian epithelial cells enhances invasion and is associated with increased matrix metalloproteinase-2 activity. Cancer Res, 2005, 65 (16): 7378-7385.
|
24. |
Jung H, Jun KH, Jung JH, et al. The expression of claudin-1, claudin-2, claudin-3, and claudin-4 in gastric cancer tissue. J Surg Res, 2011, 167(2): e185-e191.
|
25. |
Zhu JL, Gao P, Wang ZN, et al. Clinicopathological significance of claudin-4 in gastric carcinoma. World J Surg Oncol, 2013, 11: 150.
|
26. |
Mima S, Tsutsumi S, Ushijima H, et al. Induction of claudin-4 by nonsteroidal anti-inflammatory drugs and its contribution to their chemopreventive effect. Cancer Res, 2005, 65(5): 1868-1876.
|
27. |
Katahira J, Inoue N, Horiguchi Y, et al. Molecular cloning and functional characterization of the receptor for Clostridium perfringens enterotoxin. J Cell Biol, 1997, 136(6): 1239-1247.
|
28. |
Fujita K, Katahira J, Horiguchi Y, et al. Clostridium perfringens enterotoxin binds to the second extracellular loop of claudin-3, a tight junction integral membrane protein. FEBS Lett, 2000, 476(3): 258-261.
|
29. |
Robertson SL, Smedley JG 3rd, McClane BA. Identification of a claudin-4 residue important for mediating the host cell binding and action of Clostridium perfringens enterotoxin. Infect Immun, 2010, 78(1): 505-517.
|
30. |
Veshnyakova A, Protze J, Rossa J, et al. On the interaction of Clostridium perfringens enterotoxin with claudins. Toxins (Basel), 2010, 2(6): 1336-1356.
|
31. |
English DP, Santin AD. Claudins overexpression in ovarian oancer: potential targets for clostridium perfringens enterotoxin (CPE) based diagnosis and therapy. Int J Mol Sci, 2013, 14(5): 10412-10437.
|
32. |
Litkouhi B, Kwong J, Lo CM, et al. Claudin-4 overexpression in epithelial ovarian cancer is associated with hypomethylation and is a potential target for modulation of tight junction barrier function using a C-terminal fragment of Clostridium perfringens enterotoxin. Neoplasia, 2007, 9(4): 304-314.
|
33. |
Santin AD, Cane S, Bellone S, et al. Treatment of chemotherapy-resistant human ovarian cancer xenografts in C.B-17/SCID mice by intraperitoneal administration of Clostridium perfringens entero-toxin. Cancer Res, 2005, 65(10): 4334-4342.
|
34. |
Kominsky SL, Tyler B, Sosnowski J, et al. Clostridium perfringens enterotoxin as a novel-targeted therapeutic for brain metastasis. Cancer Res, 2007, 67(17): 7977-7982.
|
35. |
Kominsky SL, Vali M, Korz D, et al. Clostridium perfringens entero-toxin elicits rapid and specific cytolysis of breast carcinoma cells mediated through tight junction proteins claudin 3 and 4. Am J Pathol, 2004, 164(5): 1627-1633.
|
36. |
Santin AD, Bellone S, Marizzoni M, et al. Overexpression of claudin-3 and claudin-4 receptors in uterine serous papillary carcinoma: novel targets for a type-specific therapy using Clostridium perfringens enterotoxin (CPE). Cancer, 2007, 109(7): 1312-1322.
|
37. |
Michl P, Buchholz M, Rolke M, et al. Claudin-4: a new target for pancreatic cancer treatment using Clostridium perfringens entero-toxin. Gastroenterology, 2001, 121(3): 678-684.
|
38. |
Yamaguchi H, Kojima T, Ito T, et al. Effects of Clostridium perfringens enterotoxin via claudin-4 on normal human pancreatic duct epithelial cells and cancer cells. Cell Mol Biol Lett, 2011, 16(3): 385-397.
|
39. |
Long H, Crean CD, Lee WH, et al. Expression of Clostridium perfringens enterotoxin receptors claudin-3 and claudin-4 in prostate cancer epithelium. Cancer Res, 2001, 61(21): 7878-7881.
|
40. |
Maeda T, Murata M, Chiba H, et al. Claudin-4-targeted therapy using Clostridium perfringens enterotoxin for prostate cancer. Prostate, 2012, 72(4): 351-360.
|
41. |
Romanov V, Whyard TC, Waltzer WC, et al. A claudin 3 and claudin 4-targeted Clostridium perfringens protoxin is selectively cytotoxic to PSA-producing prostate cancer cells. Cancer Lett, 2014, 351(2): 260-264.
|
42. |
Suzuki H, Kondoh M, Li X, et al. A toxicological evaluation of a claudin modulator, the C-terminal fragment of Clostridium perfringens enterotoxin, in mice. Pharmazie, 2011, 66(7): 543-546.
|
43. |
Kakutani H, Kondoh M, Saeki R, et al. Claudin-4-targeting of diphtheria toxin fragment A using a C-terminal fragment of Clostridium perfringens enterotoxin. Eur J Pharm Biopharm, 2010, 75(2): 213-217.
|
44. |
Gao Z, Xu X, McClane B, et al. C terminus of Clostridium perfringens enterotoxin downregulates CLDN4 and sensitizes ovarian cancer cells to Taxol and Carboplatin. Clin Cancer Res, 2011, 17(5): 1065-1074.
|
45. |
Li X, Saeki R, Watari A, et al. Tissue distribution and safety evaluation of a claudin-targeting molecule, the C-terminal fragment of Clostridium perfringens enterotoxin. Eur J Pharm Sci, 2014, 52: 132-137.
|