1. |
Ding L, Lu Z, Lu Q, et al. The claudin family of proteins in human malignancy:a clinical perspective. Cancer Manag Res, 2013, 5:367-375.
|
2. |
Furuse M, Fujita K, Hiiragi T, et al. Claudin-1 and -2:novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol, 1998, 141(7):1539-1550.
|
3. |
Swisshelm K, Machl A, Planitzer S, et al. SEMP1, a senescence-associated cDNA isolated from human mammary epithelial cells, is a member of an epithelial membrane protein superfamily. Gene, 1999, 226(2):285-295.
|
4. |
Markov AG. Claudins as tight junction proteins:the molecular element of paracellular transport. Ross Fiziol Zh Im I M Sechenova, 2013, 99(2):175-195.
|
5. |
Lal-Nag M, Morin PJ. The claudins. Genome Biol, 2009, 10(8):235.
|
6. |
Krause G, Winkler L, Mueller SL, et al. Structure and function of claudins. Biochim Biophys Acta, 2008, 1778(3):631-645.
|
7. |
Medici D, Hay ED, Goodenough DA. Cooperation between snail and LEF-1 transcription factors is essential for TGF-beta1-induced epithelial-mesenchymal transition. Mol Biol Cell, 2006, 17(4):1871-1879.
|
8. |
Ikari A, Atomi K, Yamazaki Y, et al. Hyperosmolarity-induced up-regulation of claudin-4 mediated by NADPH oxidase-dependent H2O2 production and Sp1/c-Jun cooperation. Biochim Biophys Acta, 2013, 1833(12):2617-2627.
|
9. |
Kwon MJ. Emerging roles of claudins in human cancer. Int J Mol Sci, 2013, 14(9):18148-18180.
|
10. |
Arima Y, Inoue Y, Shibata T, et al. Rb depletion results in deregula-tion of E-cadherin and induction of cellular pheno-typic changes that are characteristic of the epithelial-to-mes-enchymal transition. Cancer Res, 2008, 68(13):5104-5112.
|
11. |
Morel AP, Hinkal GW, Thomas C, et al. EMT inducers catalyze malignant transformation of mammary epithelial cells and drive tumorigenesis towards claudin-low tumors in transgenic mice. PLoS Genet, 2012, 8(5):e1002723.
|
12. |
Taube JH, Herschkowitz JI, Komurov K, et al. Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci U S A, 2010, 107(35):15449-15454.
|
13. |
Akasaka H, Sato F, Morohashi S, et al. Anti-apoptotic effect of claudin-1 in tamoxifen-treated human breast cancer MCF-7 cells. BMC Cancer, 2010, 10:548.
|
14. |
Blanchard AA, Ma X, Dueck KJ, et al. Claudin 1 expression in basal-like breast cancer is related to patient age. BMC Cancer, 2013, 13:268.
|
15. |
Di Cello F, Cope L, Li H, et al. Methylation of the claudin 1 promoter is associated with loss of expression in estrogen receptor positive breast cancer. PLoS One, 2013, 8(7):e68630.
|
16. |
Hou J, Wang Z, Xu H, et al. Stanniocalicin 2 suppresses breast cancer cell migration and invasion via the PKC/claudin-1-mediated signaling. PLoS One, 2015, 10(4):e0122179.
|
17. |
Ma F, Ding X, Fan Y, et al. A CLDN1-negative phenotype predicts poor prognosis in triple-negative breast cancer. PLoS One, 2014, 9(11):e112765.
|
18. |
Tabariès S, Dupuy F, Dong Z, et al. Claudin-2 promotes breast cancer liver metastasis by facilitating tumor cell interactions with hepatocytes. Mol Cell Biol, 2012, 32(15):2979-2991.
|
19. |
Tabariès S, Annis MG, Hsu BE, et al. Lynmodulates claudin-2 expre-ssion and is a therapeutic target for breast cancer liver metastasis. Oncotarget, 2015 Mar 25.[Epub ahead of print]. PubMed PMID:25823815.
|
20. |
Kimbung S, Kovács A, Bendahl PO, et al. Claudin-2 is an indepen-dent negative prognostic factor in breast cancer and specifically predicts early liver recurrences. Mol Oncol, 2014, 8(1):119-128.
|
21. |
Tabariès S, Dong Z, Annis MG, et al. Claudin-2 is selectively enriched in and promotes the formation of breast cancer liver metastases through engagement of integrin complexes. Oncogene, 2011, 30(11):1318-1328.
|
22. |
Kolokytha P, Yiannou P, Keramopoulos D, et al. Claudin-3 and claudin-4:distinct prognostic significance in triple-negative and luminal breast cancer. Appl Immunohistochem Mol Morphol, 2014, 22(2):125-131.
|
23. |
Abd-Elazeem MA, Abd-Elazeem MA. Claudin 4 expression in triple-negative breast cancer:correlation with androgen receptors and Ki-67 expression. Ann Diagn Pathol, 2015, 19(1):37-42.
|
24. |
Cui YF, Liu AH, An DZ, et al. Claudin-4 is required for vasculogenic mimicry formation in human breast cancer cells. Oncotarget, 2015 Mar 14.[Epub ahead of print]. PubMed PMID:25871476.
|
25. |
Saeki R, Kondoh M, Kakutani H, et al. A novel tumor-targeted therapy using a claudin-4-targeting molecule. Mol Pharmacol, 2009, 76(4):918-926.
|
26. |
Kato-Nakano M, Suzuki M, Kawamoto S, et al. Characterization and evaluation of the antitumour activity of a dual-targeting mono-clonal antibody against claudin-3 and claudin-4. Anticancer Res, 2010, 30(11):4555-4562.
|
27. |
Tsukita S, Furuse M. Occludin and claudins in tight-junction strands: leading or supporting players? Trends Cell Biol, 1999, 9(7):268-273.
|
28. |
Troy TC, Turksen K. Epidermal lineage. Methods Mol Biol, 2002, 185(3):229-253.
|
29. |
Offner S, Hekele A, Teichmann U, et al. Epithelial tight junction proteins as potential antibody targets for pancarcinoma therapy. Cancer Immunol Immunother, 2005, 54(5):431-445.
|
30. |
Soini Y. Claudins 2, 3, 4, and 5 in Paget's disease and breast carci-noma. Hum Pathol, 2004, 35(12):1531-1536.
|
31. |
Soini Y. Expression of claudins 1, 2, 3, 4, 5 and 7 in various types of tumours. Histopathology, 2005, 46(5):551-560.
|
32. |
Sobel G, Páska C, Szabó I, et al. Increased expression of claudins in cervical squamous intraepithelial neoplasia and invasive carcinoma. Hum Pathol, 2005, 36(2):162-169.
|
33. |
Wu Q, Liu Y, Ren Y, et al. Tight junction protein, claudin-6, downregulates the malignant phenotype of breast carcinoma. Eur J Cancer Prev, 2010, 19(3):186-194.
|
34. |
Quan C, Lu SJ. Identification of genes preferentially expressed in mammary epithelial cells of Copenhagen rat using subtractive hybri-dization and microarrays. Carcinogenesis, 2003, 24(10):1593-1599.
|
35. |
Osanai M, Murata M, Chiba H, et al. Epigenetic silencing of claudin-6 promotes anchorage-independent growth of breast carcinoma cells. Cancer Sci, 2007, 98(10):1557-1562.
|
36. |
Liu YF, Wu Q, Ren Y, et al. Role of estrogen receptor-α in the regulation of claudin-6 expression in breast cancer cells. J Breast Cancer, 2011, 14(1):20-27.
|
37. |
Wu Q, Liu X, Liu YF, et al. Inhibition of p38 activity reverses claudin-6 induced cell apoptosis, invasion, and migration. Chin Med J (Engl), 2013, 126(18):3539-3544.
|
38. |
Escudero-Esparza A, Jiang WG, Martin TA. Claudin-5 is involved in breast cancer cell motility through the N-WASP and ROCK signalling pathways. J Exp Clin Cancer Res. 2012, 31:43.
|
39. |
Bernardi MA, Logullo AF, Pasini FS, et al. Prognostic significance of CD24 and claudin-7 immunoexpression in ductal invasive breast cancer. Oncol Rep, 2012, 27(1):28-38.
|
40. |
Kuo SJ, Chien SY, Lin C, et al. Significant elevation of CLDN16 and HAPLN3 gene expression in human breast cancer. Oncol Rep, 2010, 24(3):759-766.
|
41. |
Martin TA, Lane J, Ozupek H, et al. Claudin-20 promotes an aggressive phenotype in human breast cancer cells. Tissue Barriers, 2013, 1(3):e26518.
|
42. |
Sabatier R, Finetti P, Guille A, et al. Claudin-low breast cancers:clinical, pathological, molecular and prognostic characterization. Mol Cancer, 2014, 13:228.
|
43. |
Knezevic J, Pfefferle AD, Petrovic I, et al. Expression of miR-200c in claudin-low breast cancer alters stem cell functionality, enhances chemosensitivity and reduces metastatic potential. Oncogene, 2015 Mar 9. doi:10.1038/onc.2015.48.[Epub ahead of print]. PubMed PMID:25746005.
|
44. |
Roll JD, Rivenbark AG, Sandhu R, et al. Dysregulation of the epigenome in triple-negative breast cancers:basal-like and claudin-low breast cancers Express aberrant DNA hypermethylation. Exp Mol Pathol, 2013, 95(3):276-287.
|
45. |
Gerhard R, Ricardo S, Albergaria A, et al. Immunohistochemical features of claudin-low intrinsic subtype in metaplastic breast carcinomas. Breast, 2012, 21(3):354-360.
|
46. |
Tudoran O, Soritau O, Balacescu L, et al. Regulation of stem cells-related signaling pathways in response to doxorubicin treatment in Hs578T triple-negative breast cancer cells. Mol Cell Biochem, 2015 Jul 18. Epub ahead of print]. PubMed PMID:26187676.
|