1. |
Acharyya S, Oskarsson T, Vanharanta S, et al. A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell, 2012, 150(1):165-178.
|
2. |
Gianni L, Eiermann W, Semiglazov V, et al. Neoadjuvant and adjuvant trastuzumab in patients with HER2-positive locally advanced breast cancer (NOAH):follow-up of a randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet Oncol, 2014, 15(6):640-647.
|
3. |
O'Sullivan CC, Bradbury I, Campbell C, et al. Efficacy of adjuvant trastuzumab for patients with human epidermal growth factor receptor 2-positive early breast cancer and tumors ≤ 2 cm:a meta-analysis of the randomized trastuzumab trials. J Clin Oncol, 2015, 33(24):2600-2608.
|
4. |
Santa-Maria CA, Nye L, Mutonga MB, et al. Management of metastatic HER2-positive breast cancer:where are we and where do we go from here? Oncology (Williston Park), 2016, 30(2):148-155.
|
5. |
Krop IE, Kim SB, González-Martín A, et al. Trastuzumab emtansine versus treatment of physician's choice for pretreated HER2-positive advanced breast cancer (TH3RESA):a randomised, open-label, phase 3 trial. Lancet Oncol, 2014, 15(7):689-699.
|
6. |
Bachelot T, Romieu G, Campone M, et al. Lapatinib plus capecitabine in patients with previously untreated brain metastases from HER2-positive metastatic breast cancer (LANDSCAPE):a single-group phase 2 study. Lancet Oncol, 2013, 14(1):64-71.
|
7. |
Verma S, Miles D, Gianni L, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med, 2012, 367(19):1783-1791.
|
8. |
Arienti C, Zanoni M, Pignatta S, et al. Preclinical evidence of multiple mechanisms underlying trastuzumab resistance in gastric cancer. Oncotarget, 2016, 7(14):18424-18439.
|
9. |
陶云霞, 张有为,孙丽,等. 曲妥珠单抗耐药机制及耐药后的治疗策略的研究进展. 中华临床医师杂志:电子版, 2015, 9(22):4212-4215.
|
10. |
Shi Y, Fan X, Meng W, et al. Engagement of immune effector cells by trastuzumab induces HER2/ERBB2 downregulation in cancer cells through STAT1 activation. Breast Cancer Res, 2014, 16(2):R33.
|
11. |
Scaltriti M, Nuciforo P, Bradbury I, et al. High HER2 expression correlates with response to the combination of lapatinib and trastuzumab. Clin Cancer Res, 2015, 21(3):569-576.
|
12. |
Lipton A, Goodman L, Leitzel K, et al. HER3, p95HER2, and HER2 protein expression levels define multiple subtypes of HER2-positive metastatic breast cancer. Breast Cancer Res Treat, 2013, 141(1):43-53.
|
13. |
Madrid-Paredes A, Cañadas-Garre M, Sánchez-Pozo A. De novo resistance biomarkers to anti-HER2 therapies in HER2-positive breast cancer. Pharmacogenomics, 2015, 16(12):1411-1426.
|
14. |
Tural D, Serdengecti S, Demirelli F, et al. Clinical significance of p95HER2 over expression, PTEN loss and PI3K expression in p185HER2-positive metastatic breast cancer patients treated with trastuzumab-based therapies. Br J Cancer, 2014, 110(8):1968-1976.
|
15. |
Inoue K, Fry EA. Aberrant splicing of estrogen receptor, HER2, and CD44 genes in breast cancer. Genet Epigenet, 2015, 7:19-32.
|
16. |
Tan M, Huynh FC, Jones FE. MicroRNA-7 inhibits multiple oncogenic pathways to suppress HER2Δ16 mediated breast tumorigenesis and reverse trastuzumab resistance. PLoS ONE, 2014, 9(12):e114419.
|
17. |
Giuliano M, Trivedi MV, Schiff R. Bidirectional crosstalk between the estrogen receptor and human epidermal growth factor receptor 2 signaling pathways in breast cancer:molecular basis and clinical implications. Breast Care (Basel), 2013, 8(4):256-262.
|
18. |
Luque-Cabal M, Garcia-Teijido P, Fernández-Pérez Y, et al. Mechanisms behind the resistance to trastuzumab in HER2-Amplified breast cancer and strategies to overcome it. Clin Med Insights Oncol, 2016, 10(Suppl 1):21-30.
|
19. |
Menyhárt O, Santarpia L, Győrffy B. A comprehensive outline of trastuzumab resistance biomarkers in HER2 overexpressing breast cancer. Curr Cancer Drug Targets, 2015, 15(8):665-683.
|
20. |
Wilks ST. Potential of overcoming resistance to HER2-targeted therapies through the PI3K/Akt/mTOR pathway. Breast, 2015, 24(5):548-555.
|
21. |
Vu T, Sliwkowski MX, Claret FX. Personalized drug combinations to overcome trastuzumab resistance in HER2-positive breast cancer. Biochim Biophys Acta, 2014, 1846(2):353-365.
|
22. |
Gamez-Pozo A, Perez Carrion RM, Manso L, et al. The long-HER study:clinical and molecular analysis of patients with HER2+ advanced breast cancer who become long-term survivors with trastuzumab-based therapy. PLoS One, 2014, 9(10):e109611.
|
23. |
Majewski IJ, Nuciforo P, Mittempergher L, et al. PIK3CA mutations are associated with decreased benefit to neoadjuvant human epidermal growth factor receptor 2-targeted therapies in breast cancer. J Clin Oncol, 2015, 33(12):1334-1339.
|
24. |
Loibl S, von Minckwitz G, Schneeweiss A, et al. PIK3CA mutations are associated with lower rates of pathologic complete response to anti-human epidermal growth factor receptor 2(her2) therapy in primary HER2-overexpressing breast cancer. J Clin Oncol, 2014, 32(29):3212-3220.
|
25. |
Pogue-Geile KL, Song N, Jeong JH, et al. Intrinsic subtypes, PIK3CA mutation, and the degree of benefit from adjuvant trastuzumab in the NSABP B-31 trial. J Clin Oncol, 2015, 33(12):1340-1347.
|
26. |
José Baselga, Javier Cortés, Seock-Ah Im, et al. Biomarker analyses in CLEOPATRA:a phase Ⅲ, placebo-controlled study of pertuzumab in human epidermal growth factor receptor 2-positive, first-line metastatic breast cancer. J Clin Oncol, 2014, 32(33):3753-3761.
|
27. |
Loi S, Michiels S, Lambrechts D, et al. Somatic mutation profiling and associations with prognosis and trastuzumab benefit in early breast cancer. J Natl Cancer Inst, 2013, 105(13):960-967.
|
28. |
André F, O'Regan R, Ozguroglu M, et al. Everolimus for women with trastuzumab-resistant, HER2-positive, advanced breast cancer (BOLERO-3):a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Oncology, 2014, 15(6):580-591.
|
29. |
Christopoulos PF, Msaouel P, Koutsilieris M. The role of the insulin-like growth factor-1 system in breast cancer. Mol Cancer, 2015, 14:43.
|
30. |
Gagliato DM, Jardim DL, Marchesi MS, et al. Mechanisms of resistance and sensitivity to anti-HER2 therapies in HER2+ breast cancer. Oncotarget, 2016 Jan 27.[Epub ahead of print].
|
31. |
Roskoski R Jr. Src protein-tyrosine kinase structure, mechanism, and small molecule inhibitors. Pharmacol Res, 2015, 94:9-25.
|
32. |
Peiró G, Ortiz-Martínez F, Gallardo A, et al. Src, a potential target for overcoming trastuzumab resistance in HER2-positive breast carcinoma. Br J Cancer, 2014, 111(4):689-695.
|
33. |
Veenstra C, Pérez-Tenorio G, Stelling A, et al. Met and its ligand HGF are associated with clinical outcome in breast cancer. Oncotarget,.
|
34. |
Obeid EI, Conzen SD. The role of adrenergic signaling in breast cancer biology. Cancer Biomark, 2013, 13(3):161-169.
|
35. |
Liu D, Yang Z, Wang T, et al. β2-AR signaling controls trastuzumab resistance-dependent pathway. Oncogene, 2016, 35(1):47-58.
|
36. |
von der Heyde S, Wagner S, Czerny A, et al. mRNA profiling reveals determinants of trastuzumab efficiency in HER2-positive breast cancer. PLoS One, 2015, 10(2):e0117818.·.
|
37. |
May 10.[Epub ahead of print].
|