1. |
Rui Y, Wang C, Zhou Z, et al. K-Ras mutation and prognosis of colorectal cancer: a meta-analysis. Hepatogastroenterology, 2015, 62(137): 19-24.
|
2. |
Inamoto S, Itatani Y, Yamamoto T, et al. Loss of SMAD4 promotes colorectal cancer progression by accumulation of myeloid-derived suppressor cells through the CCL15-CCR1 chemokine axis. Clin Cancer Res, 2016, 22(2): 492-501.
|
3. |
Wosiak A, Wodziński D, Kolasa M, et al. SMAD-4 gene expression in human colorectal cancer: Comparison with some clinical and pathological parameters. Pathol Res Pract, 2017, 213(1): 45-49.
|
4. |
Cheng D, Zhao S, Tang H, et al. MicroRNA-20a-5p promotes colorectal cancer invasion and metastasis by downregulating Smad4. Oncotarget, 2016, 7(29): 45199-45213.
|
5. |
Belmont PJ, Budinska E, Jiang P, et al. Cross-species analysis of genetically engineered mouse models of MAPK-driven colorectal cancer identifies hallmarks of the human disease. Dis Model Mech, 2014, 7(6): 613-623.
|
6. |
Pino MS, Chung DC. The chromosomal instability pathway in colon cancer. Gastroenterology, 2010, 138(6): 2059-2072.
|
7. |
Gelsomino F, Barbolini M, Spallanzani A, et al. The evolving role of microsatellite instability in colorectal cancer: A review. Cancer Treat Rev, 2016, 51: 19-26.
|
8. |
Fleet JC. Animal models of gastrointestinal and liver diseases. New mouse models for studying dietary prevention of colorectal cancer. Am J Physiol Gastrointest Liver Physiol, 2014, 307(3): G249-G259.
|
9. |
Hung KE, Maricevich MA, Richard LG, et al. Development of a mouse model for sporadic and metastatic colon tumors and its use in assessing drug treatment. Proc Natl Acad Sci U S A, 2010, 107(4): 1565-1570.
|
10. |
Roper J, Martin ES, Hung KE. Overview of genetically engineered mouse models of colorectal carcinoma to enable translational biology and drug development. Curr Protoc Pharmacol, 2014, 65: 14.
|
11. |
Abi-Ghanem J, Samsonov SA, Pisabarro MT. Insights into the preferential order of strand exchange in the Cre/loxP recombinase system: impact of the DNA spacer flanking sequence and flexibility. J Comput Aided Mol Des, 2015, 29(3): 271-282.
|
12. |
Puppa MJ, White JP, Sato S, et al. Gut barrier dysfunction in the Apc (Min/+) mouse model of colon cancer cachexia. Biochim Biophys Acta, 2011, 1812(12): 1601-1606.
|
13. |
Marecki JC, Parajuli N, Crow JP, et al. The use of the Cre/loxP system to study oxidative stress in tissue-specific manganese superoxide dismutase knockout models. Antioxid Redox Signal, 2014, 20(10): 1655-1670.
|
14. |
Amankwatia EB, Chakravarty P, Carey FA, et al. MicroRNA-224 is associated with colorectal cancer progression and response to 5-fluorouracil-based chemotherapy by KRAS-dependent and -independent mechanisms. Br J Cancer, 2015, 112(9): 1480-1490.
|
15. |
Saud SM, Li W, Morris NL, et al. Resveratrol prevents tumorigenesis in mouse model of Kras activated sporadic colorectal cancer by suppressing oncogenic Kras expression. Carcinogenesis, 2014, 35(12): 2778-2786.
|
16. |
Voorneveld PW, Kodach LL, Jacobs RJ, et al. The BMP pathway either enhances or inhibits the Wnt pathway depending on the SMAD4 and p53 status in CRC. Br J Cancer, 2015, 112(1): 122-130.
|
17. |
Luo F, Brooks DG, Ye H, et al. Mutated K-ras (Asp12) promotes tumourigenesis in Apc (Min) mice more in the large than the small intestines, with synergistic effects between K-ras and Wnt pathways. Int J Exp Pathol, 2009, 90(5): 558-574.
|
18. |
Panza P, Maier J, Schmees C, et al. Live imaging of endogenous protein dynamics in zebrafish using chromobodies. Development, 2015, 142(10): 1879-1884.
|
19. |
Kocher B, Piwnica-Worms D. Illuminating cancer systems with genetically engineered mouse models and coupled luciferase reporters in vivo. Cancer Discov, 2013, 3(6): 616-629.
|
20. |
Koba W, Jelicks LA, Fine EJ. MicroPET/SPECT/CT imaging of small animal models of disease. Am J Pathol, 2013, 182(2): 319-324.
|
21. |
Qin X, Hu X, Wu C, et al. Hepatocellular carcinoma cells carrying a multimodality reporter gene for fluorescence, bioluminescence, and magnetic resonance imaging in vitro and in vivo. Acad Radiol, 2016, 23(11): 1422-1430.
|
22. |
Brenner H, Kloor M, Pox CP. Colorectal cancer. Lancet, 2014, 383(9927): 1490-1502.
|
23. |
Chen J, Chen Z. The effect of immune microenvironment on the progression and prognosis of colorectal cancer. Med Oncol, 2014, 31(8): 82.
|
24. |
Patel SA, Gooderham NJ. IL6 mediates immune and colorectal cancer cell cross-talk via miR-21 and miR-29b. Mol Cancer Res, 2015, 13(11): 1502-1508.
|
25. |
Maglietta A, Maglietta R, Staiano T, et al. The immune landscapes of polypoid and nonpolypoid precancerous colorectal lesions. PLoS One, 2016, 11(7): e0159373.
|