1. |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin, 2019, 69(1): 7-34.
|
2. |
Chen W, Sun K, Zheng R, et al. Cancer incidence and mortality in China, 2014. Chin J Cancer Res, 2018, 30(1): 1-12.
|
3. |
Zhou M, Wang H, Zeng X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990—2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2019, 394(10204): 1145-1158.
|
4. |
Japanese Gastric Cancer Association. Japanese gastric cancer treatment guidelines 2014(ver. 4). Gastric Cancer, 2017, 20(1): 1-19.
|
5. |
Li X, Shao C, Shi Y, et al. Lessons learned from the blockade of immune checkpoints in cancer immunotherapy. J Hematol Oncol, 2018, 11(1): 31.
|
6. |
Riley RS, June CH, Langer R, et al. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov, 2019, 18(3): 175-196.
|
7. |
Bang YJ, Kang YK, Catenacci DV, et al. Pembrolizumab alone or in combination with chemotherapy as first-line therapy for patients with advanced gastric or gastroesophageal junction adenocarcinoma: results from the phase Ⅱ nonrandomized KEYNOTE-059 study. Gastric Cancer, 2019, 22(4): 828-837.
|
8. |
Hellmann MD, Ciuleanu TE, Pluzanski A, et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med, 2018, 378(22): 2093-2104.
|
9. |
Perez-Ruiz E, Minute L, Otano I, et al. Prophylactic TNF blockade uncouples efficacy and toxicity in dual CTLA-4 and PD-1 immunotherapy. Nature, 2019, 569(7756): 428-432.
|
10. |
Sim GC, Radvanyi L. The IL-2 cytokine family in cancer immunotherapy. Cytokine Growth Factor Rev, 2014, 25(4): 377-390.
|
11. |
Bhattacharya P, Budnick I, Singh M, et al. Dual role of GM-CSF as a pro-inflammatory and a regulatory cytokine: implications for immune therapy. J Interferon Cytokine Res, 2015, 35(8): 585-599.
|
12. |
Segal NH, He AR, Doi T, et al. Phase Ⅰ study of single-agent utomilumab (PF-05082566), a 4-1BB/CD137 agonist, in patients with advanced cancer. Clin Cancer Res, 2018, 24(8): 1816-1823.
|
13. |
Sauter CS, Senechal B, Rivière I, et al. CD19 CAR T cells following autologous transplantation in poor-risk relapsed and refractory B-cell non-Hodgkin lymphoma. Blood, 2019, 134(7): 626-635.
|
14. |
Caram MEV, Ross R, Lin P, et al. Factors associated with use of sipuleucel-T to treat patients with advanced prostate cancer. JAMA Netw Open, 2019, 2(4): e192589.
|
15. |
Liu K, Tan S, Chai Y, et al. Structural basis of anti-PD-L1 monoclonal antibody avelumab for tumor therapy. Cell Res, 2017, 27(1): 151-153.
|
16. |
Tan S, Chen D, Liu K, et al. Crystal clear: visualizing the intervention mechanism of the PD-1/PD-L1 interaction by two cancer therapeutic monoclonal antibodies. Protein Cell, 2016, 7(12): 866-877.
|
17. |
Tan S, Zhang CW, Gao GF. Seeing is believing: anti-PD-1/PD-L1 monoclonal antibodies in action for checkpoint blockade tumor immunotherapy. Signal Transduct Target Ther, 2016, 1: 16029.
|
18. |
Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science, 2018, 359(6382): 1350-1355.
|
19. |
Muro K, Chung HC, Shankaran V, et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): a multicentre, open-label, phase 1b trial. Lancet Oncol, 2016, 17(6): 717-726.
|
20. |
Kang YK, Boku N, Satoh T, et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet, 2017, 390(10111): 2461-2471.
|
21. |
Boku N, Ryu MH, Kato K, et al. Safety and efficacy of nivolumab in combination with S-1/capecitabine plus oxaliplatin in patients with previously untreated, unresectable, advanced, or recurrent gastric/gastroesophageal junction cancer: interim results of a randomized, phase Ⅱ trial (ATTRACTION-4). Ann Oncol, 2019, 30(2): 250-258.
|
22. |
Fuchs CS, Doi T, Jang RW, et al. Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: Phase 2 clinical KEYNOTE-059 trial. JAMA Oncol, 2018, 4(5): e180013.
|
23. |
Bang YJ, Muro K, Fuchs CS, et al. KEYNOTE-059 cohort 2: Safety and efficacy of pembrolizumab (pembro) plus 5-fluorouracil (5-FU) and cisplatin for first-line (1L) treatment of advanced gastric cancer. J Clin Oncol, 2017, 35(15_suppl): 4012-4012.
|
24. |
Tabernero J, Bang YJ, Fuchs CS, et al. KEYNOTE-062: Phase Ⅲ study of pembrolizumab (MK-3475) alone or in combination with chemotherapy versus chemotherapy alone as first-line therapy for advanced gastric or gastroesophageal junction (GEJ) adenocarcinoma. J Clin Oncol, 2016, 34(4_suppl): TPS185-TPS185.
|
25. |
Shitara K, Özgüroğlu M, Bang YJ, et al. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): a randomised, open-label, controlled, phase 3 trial. Lancet, 2018, 392(10142): 123-133.
|
26. |
Janjigian YY, Bendell JC, Calvo E, et al. CheckMate-032: Phase Ⅰ/Ⅱ, open-label study of safety and activity of nivolumab (nivo) alone or with ipilimumab (ipi) in advanced and metastatic (A/M) gastric cancer (GC). J Clin Oncol, 2016, 34(15_suppl): 4010-4010.
|
27. |
Ganesh K, Stadler ZK, Cercek A, et al. Immunotherapy in colorectal cancer: rationale, challenges and potential. Nat Rev Gastroenterol Hepatol, 2019, 16(6): 361-375.
|
28. |
Acheampong E, Spencer I, Lin W, et al. Is the blood an alternative for programmed cell death ligand 1 assessment in non-small cell lung cancer? Cancers (Basel), 2019, 11(7): pii: E920.
|
29. |
Luchini C, Bibeau F, Ligtenberg MJL, et al. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach. Ann Oncol, 2019 May 6. pii: mdz116.
|
30. |
Chalmers ZR, Connelly CF, Fabrizio D, et al. Analysis of 100000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med, 2017, 9(1): 34.
|
31. |
Chowell D, Morris LGT, Grigg CM, et al. Patient HLA class Ⅰ genotype influences cancer response to checkpoint blockade immunotherapy. Science, 2018, 359(6375): 582-587.
|
32. |
Zang YS, Dai C, Xu X, et al. Comprehensive analysis of potential immunotherapy genomic biomarkers in 1000 Chinese patients with cancer. Cancer Med, 2019, 8(10): 4699-4708.
|
33. |
du Rusquec P, de Calbiac O, Robert M, et al. Clinical utility of pembrolizumab in the management of advanced solid tumors: an evidence-based review on the emerging new data. Cancer Manag Res, 2019, 11: 4297-4312.
|
34. |
Surendran SP, Moon MJ, Park R, et al. Bioactive nanoparticles for cancer immunotherapy. Int J Mol Sci, 2018, 19(12): pii: E3877.
|
35. |
Namiki Y, Fuchigami T, Tada N, et al. Nanomedicine for cancer: lipid-based nanostructures for drug delivery and monitoring. Acc Chem Res, 2011, 44(10): 1080-1093.
|
36. |
Li R, Liu B, Gao J. The application of nanoparticles in diagnosis and theranostics of gastric cancer. Cancer Lett, 2017, 386: 123-130.
|
37. |
Martins F, Sofiya L, Sykiotis GP, et al. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat Rev Clin Oncol, 2019, 16(9): 563-580.
|
38. |
Kim CG, Kim KH, Pyo KH, et al. Hyperprogressive disease during PD-1/PD-L1 blockade in patients with non-small-cell lung cancer. Ann Oncol, 2019, 30(7): 1104-1113.
|
39. |
Di Pilato M, Kim EY, Cadilha BL, et al. Targeting the CBM complex causes T Nature, 2019, 570(7759): 112-116.
|