Citation: WANG Na, ZHOU Yong, LI Ka. Research progress on association of gut microbiota and postoperative gastrointestinal dysfunction in patients after abdominal surgery. CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY, 2022, 29(2): 248-254. doi: 10.7507/1007-9424.202104006 Copy
1. | Chen RY, Kung VL, Das S, et al. Duodenal microbiota in stunted undernourished children with enteropathy. N Engl J Med, 2020, 383(4): 321-333. |
2. | Lindenbaum J, Kent TH, Sprinz H. Malabsorption and jejunitis in American Peace Corps volunteers in Pakistan. Ann Intern Med, 1966, 65(6): 1201-1209. |
3. | Tognini P. Gut microbiota: a potential regulator of neurodevelopment. Front Cell Neurosci, 2017, 11: 25. doi: 10.3389/fncel.2017.00025. |
4. | Bhattarai Y, Williams BB, Battaglioli EJ, et al. Gut microbiota-produced tryptamine activates an epithelial G-protein-coupled receptor to increase colonic secretion. Cell Host Microbe, 2018, 23(6): 775-785. |
5. | 傅志泉, 朱鹏翀, 李清林, 等. 大承气汤治疗胃肠功能障碍的 Meta 分析. 中华中医药学刊, 2017, 35(1): 169-172. |
6. | 刘海亮, 周荣斌. 肠功能障碍的发病机制认识. 中国急救医学, 2007, 27(10): 940-942. |
7. | 江志伟, 王刚. 延迟性术后肠麻痹的概念及防治策略. 山东大学学报(医学版), 2020, 58(5): 1-5. |
8. | Gero D, Gié O, Hübner M, et al. Postoperative ileus: in search of an international consensus on definition, diagnosis, and treatment. Langenbecks Arch Surg, 2017, 402(1): 149-158. |
9. | 刘丽蕾, 王湘英. 重症急性胰腺炎合并胃肠功能障碍的机制研究及诊治现状. 世界华人消化杂志, 2013, 21(34): 3828-3834. |
10. | Mazzotta E, Villalobos-Hernandez EC, Fiorda-Diaz J, et al. Postoperative ileus and postoperative gastrointestinal tract dysfunction: pathogenic mechanisms and novel treatment strategies beyond colorectal enhanced recovery after surgery protocols. Front Pharmacol, 2020, 11: 583422. doi: 10.3389/fphar.2020.583422. |
11. | Farmer AD, Holt CB, Downes TJ, et al. Pathophysiology, diagnosis, and management of opioid-induced constipation. Lancet Gastroenterol Hepatol, 2018, 3(3): 203-212. |
12. | Wiggins T. Benefits of laparoscopy in selected cases of small bowel obstruction. Lancet Gastroenterol Hepatol, 2019, 4(4): 257-259. |
13. | Smith K. Neurogastroenterology: ageing, ENS senescence and gastrointestinal motility. Nat Rev Gastroenterol Hepatol, 2014, 11(3): 141. doi: 10.1038/nrgastro.2014.12. |
14. | Brierley SM, Linden DR. Neuroplasticity and dysfunction after gastrointestinal inflammation. Nat Rev Gastroenterol Hepatol, 2014, 11(10): 611-627. |
15. | Loughman A, Ponsonby AL, O’Hely M, et al. Gut microbiota composition during infancy and subsequent behavioural outcomes. EBioMedicine, 2020, 52: 102640. doi: 10.1016/j.ebiom.2020.102640. |
16. | Ma TT, Yu SY, Li Y, et al. Randomised clinical trial: an assessment of acupuncture on specific meridian or specific acupoint vs. sham acupuncture for treating functional dyspepsia. Aliment Pharmacol Ther, 2012, 35(5): 552-561. |
17. | Wang Y, Zhang Y, Jiang R. Early traditional Chinese medicine bundle therapy for the prevention of sepsis acute gastrointestinal injury in elderly patients with severe sepsis. Sci Rep, 2017, 7: 46015. doi: 10.1038/srep46015. |
18. | Zhu MF, Xing X, Lei S, et al. Electroacupuncture at bilateral zusanli points (ST36) protects intestinal mucosal immune barrier in sepsis. Evid Based Complement Alternat Med, 2015, 2015: 639412. doi: 10.1155/2015/639412. |
19. | Hansen CT, Sørensen M, Møller C, et al. Effect of laxatives on gastrointestinal functional recovery in fast-track hysterectomy: a double-blind, placebo-controlled randomized study. Am J Obstet Gynecol, 2007, 196(4): 311.e1. doi: 10.1016/j.ajog.2006.10.902-7. |
20. | Vriesman MH, Koppen IJN, Camilleri M, et al. Management of functional constipation in children and adults. Nat Rev Gastroenterol Hepatol, 2020, 17(1): 21-39. |
21. | Gracie DJ, Hamlin PJ, Ford AC. The influence of the brain-gut axis in inflammatory bowel disease and possible implications for treatment. Lancet Gastroenterol Hepatol, 2019, 4(8): 632-642. |
22. | Black CJ, Yuan Y, Selinger CP, et al. Efficacy of soluble fibre, antispasmodic drugs, and gut-brain neuromodulators in irritable bowel syndrome: a systematic review and network meta-analysis. Lancet Gastroenterol Hepatol, 2020, 5(2): 117-131. |
23. | Gustafsson UO, Scott MJ, Schwenk W, et al. Guidelines for perioperative care in elective colonic surgery: Enhanced Recovery After Surgery (ERAS®) Society recommendations. Clin Nutr, 2012, 31(6): 783-800. |
24. | Payne SC, Furness JB, Stebbing MJ. Bioelectric neuromodulation for gastrointestinal disorders: effectiveness and mechanisms. Nat Rev Gastroenterol Hepatol, 2019, 16(2): 89-105. |
25. | Yuan JH, Song LM, Liu Y, et al. The effects of hyperbaric oxygen therapy on pelvic radiation induced gastrointestinal complications (rectal bleeding, diarrhea, and pain): a meta-analysis. Front Oncol, 2020, 10: 390. doi: 10.3389/fonc.2020.00390. |
26. | Gupta N, Kumar A, Harish RK, et al. Comparison of postoperative analgesia and opioid requirement with thoracic epidural vs. continuous rectus sheath infusion in midline incision laparotomies under general anaesthesia—A prospective randomised controlled study. Indian J Anaesth, 2020, 64(9): 750-755. |
27. | 林璋, 祖先鹏, 谢海胜, 等. 肠道菌群与人体疾病发病机制的研究进展. 药学学报, 2016, 51(6): 843-852. |
28. | Moeller AH, Li Y, Mpoudi Ngole E, et al. Rapid changes in the gut microbiome during human evolution. Proc Natl Acad Sci USA, 2014, 111(46): 16431-16435. |
29. | Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell, 2016, 164(3): 337-340. |
30. | Bäumler AJ, Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature, 2016, 535(7610): 85-93. |
31. | 肖锶瑶, 张纾难. 肠道菌群和呼吸系统疾病相关性的研究进展. 中国全科医学, 2021, 24(9): 1165-1172. |
32. | Foster JA, Rinaman L, Cryan JF. Stress & the gut-brain axis: regulation by the microbiome. Neurobiol Stress, 2017, 7: 124-136. |
33. | Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 2010, 464(7285): 59-65. |
34. | Goodrich JK, Waters JL, Poole AC, et al. Human genetics shape the gut microbiome. Cell, 2014, 159(4): 789-799. |
35. | Zhang W, Qu W, Wang H, et al. Antidepressants fluoxetine and amitriptyline induce alterations in intestinal microbiota and gut microbiome function in rats exposed to chronic unpredictable mild stress. Transl Psychiatry, 2021, 11(1): 131. doi: 10.1038/s41398-021-01254-5. |
36. | Zhang Z, Tang H, Chen P, et al. Demystifying the manipulation of host immunity, metabolism, and extraintestinal tumors by the gut microbiome. Signal Transduct Target Ther, 2019, 4: 41. doi: 10.1038/s41392-019-0074-5. |
37. | Pluznick JL. The gut microbiota in kidney disease. Science, 2020, 369(6510): 1426-1427. |
38. | Clarke G, Grenham S, Scully P, et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry, 2013, 18(6): 666-673. |
39. | 陈坚, 邱志兵, 罗忠光, 等. 肠易激综合征患者 50 例的小肠细菌过度生长和低度炎症反应. 中华消化杂志, 2018, 38(11): 769-773. |
40. | 胡水清, 张玫. 小肠细菌过度生长与肠易激综合征相关性的研究进展. 重庆医学, 2015, 44(16): 2282-2284. |
41. | Saffouri GB, Shields-Cutler RR, Chen J, et al. Small intestinal microbial dysbiosis underlies symptoms associated with functional gastrointestinal disorders. Nat Commun, 2019, 10(1): 2012. doi: 10.1038/s41467-019-09964-7. |
42. | Singh Y, Trautwein C, Dhariwal A, et al. DJ-1 (Park7) affects the gut microbiome, metabolites and the development of innate lymphoid cells (ILCs). Sci Rep, 2020, 10(1): 16131. doi: 10.1038/s41598-020-72903-w. |
43. | Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease. Nat Commun, 2018, 9(1): 3294. doi: 10.1038/s41467-018-05470-4. |
44. | Gao J, Xu K, Liu H, et al. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front Cell Infect Microbiol, 2018, 8: 13. doi: 10.3389/fcimb.2018.00013. |
45. | 罗金燕. 5 羟色胺与胃肠运动及感知疾病—2005 年美国 DDW 巡礼. 中国实用内科杂志, 2006, 26(10): 723-724. |
46. | Kim SW, Kim S, Son M, et al. Melatonin controls microbiota in colitis by goblet cell differentiation and antimicrobial peptide production through Toll-like receptor 4 signalling. Sci Rep, 2020, 10(1): 2232. doi: 10.1038/s41598-020-59314-7. |
47. | Wang B, Zhu S, Liu Z, et al. Increased expression of colonic mucosal melatonin in patients with irritable bowel syndrome correlated with gut dysbiosis. Genom Proteom Bioinf, 2020, 18(6): 708-720. |
48. | 陈春球, 丁卫星, 李永渝. 褪黑素对胃肠运动的影响. 中国病理生理杂志, 2011, 27(11): 2185-2188. |
49. | 张磊, 刘芳娥, 胡文治, 等. 褪黑素对噪声应激大鼠胃肠传输功能的影响及其机制. 世界华人消化杂志, 2008, 16(2): 208-211. |
50. | Hemati K, Pourhanifeh MH, Dehdashtian E, et al. Melatonin and morphine: potential beneficial effects of co-use. Fundam Clin Pharmacol, 2021, 35(1): 25-39. |
51. | 丁亚萍, 许勤, 王建华, 等. 添加短链脂肪酸的 TPN 对术后化疗大鼠结肠粘膜细胞增殖作用的研究. 实用临床医药杂志, 2006, 10(9): 38-41. |
52. | 刘松珍, 张雁, 张名位, 等. 肠道短链脂肪酸产生机制及生理功能的研究进展. 广东农业科学, 2013, 40(11): 99-103. |
53. | Parada Venegas D, De la Fuente MK, Landskron G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol, 2019, 10: 277. doi: 10.3389/fimmu.2019.00277. |
54. | Dalile B, Van Oudenhove L, Vervliet B, et al. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol, 2019, 16(8): 461-478. |
55. | Aho VTE, Houser MC, Pereira PAB, et al. Relationships of gut microbiota, short-chain fatty acids, inflammation, and the gut barrier in Parkinson’s disease. Mol Neurodegener, 2021, 16(1): 6. doi: 10.1186/s13024-021-00427-6. |
56. | Gill PA, van Zelm MC, Muir JG, et al. Review article: short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders. Aliment Pharmacol Ther, 2018, 48(1): 15-34. |
57. | 赵心宇, 赵春艳, 孟秀香, 等. 丁酸类衍生物抗肿瘤作用机制的研究进展. 中国老年学杂志, 2007, 27(5): 495-496. |
58. | 徐仁应, 卞玉海, 万燕萍, 等. 短链脂肪酸与结直肠肿瘤细胞凋亡关系的研究. 肠外与肠内营养, 2013, 20(5): 259-262. |
59. | Scales BS, Huffnagle GB. The microbiome in wound repair and tissue fibrosis. J Pathol, 2013, 229(2): 323-331. |
60. | Jain U, Lai CW, Xiong S, et al. Temporal regulation of the bacterial metabolite deoxycholate during colonic repair is critical for crypt regeneration. Cell Host Microbe, 2018, 24(3): 353-363. |
61. | Wirbel J, Pyl PT, Kartal E, et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat Med, 2019, 25(4): 679-689. |
62. | Haffke M, Fehlmann D, Rummel G, et al. Structural basis of species-selective antagonist binding to the succinate receptor. Nature, 2019, 574(7779): 581-585. |
63. | De Vadder F, Kovatcheva-Datchary P, Zitoun C, et al. Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis. Cell Metab, 2016, 24(1): 151-157. |
64. | Mills EL, Pierce KA, Jedrychowski MP, et al. Accumulation of succinate controls activation of adipose tissue thermogenesis. Nature, 2018, 560(7716): 102-106. |
65. | Nadjsombati MS, McGinty JW, Lyons-Cohen MR, et al. Detection of succinate by intestinal tuft cells triggers a type 2 innate immune circuit. Immunity, 2018, 49(1): 33-41. |
66. | Haraguchi T, Kayashima T, Okazaki Y, et al. Cecal succinate elevated by some dietary polyphenols may inhibit colon cancer cell proliferation and angiogenesis. J Agric Food Chem, 2014, 62(24): 5589-5594. |
67. | Macias-Ceja DC, Ortiz-Masiá D, Salvador P, et al. Succinate receptor mediates intestinal inflammation and fibrosis. Mucosal Immunol, 2019, 12(1): 178-187. |
68. | Tannahill GM, Curtis AM, Adamik J, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature, 2013, 496(7444): 238-242. |
69. | Mills E, O’Neill LA. Succinate: a metabolic signal in inflammation. Trends Cell Biol, 2014, 24(5): 313-320. |
70. | 吕燕华, 梁剑平, 张丹丹, 等. 琥珀酸盐受体介导 Foxm1 表达促进肺纤维化. 重庆医科大学学报, 2021, 46(2): 206-211. |
71. | Mills EL, Kelly B, Logan A, et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell, 2016, 167(2): 457-470. |
72. | Garrote GL, Abraham AG, Rumbo M. Is lactate an undervalued functional component of fermented food products? Front Microbiol, 2015, 6: 629. doi: 10.3389/fmicb.2015.00629. |
73. | Kakisu E, Abraham AG, Farinati CT, et al. Lactobacillus plantarum isolated from Kefir protects Vero cells from cytotoxicity by type-Ⅱ shiga toxin from Escherichia coli O157:H7. J Dairy Res, 2013, 80(1): 64-71. |
74. | Golowczyc MA, Mobili P, Garrote GL, et al. Protective action of Lactobacillus Kefir carrying S-layer protein against Salmonella enterica serovar enteritidis. Int J Food Microbiol, 2007, 118(3): 264-273. |
75. | Lee YS, Kim TY, Kim Y, et al. Microbiota-derived lactate accelerates intestinal stem-cell-mediated epithelial development. Cell Host Microbe, 2018, 24(6): 833-846. |
76. | 张峻岭. 精准医疗背景下进展期胃癌抗血管靶向治疗的现状与挑战. 中国肿瘤生物治疗杂志, 2020, 27(7): 825-829. |
77. | Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med, 2015, 372(9): 793-795. |
78. | Precision medicine gets an edge. EBioMedicine, 2019, 50: 1-2. |
79. | 崔芳芳, 何贤英, 石金铭, 等. 临床医师精准医疗知信行现状及影响因素调查分析. 医学研究生学报, 2021, 34(3): 282-286. |
80. | Jameson JL, Longo DL. Precision medicine—personalized, problematic, and promising. N Engl J Med, 2015, 372(23): 2229-2234. |
81. | Llovet JM, Montal R, Sia D, et al. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol, 2018, 15(10): 599-616. |
82. | Zeggini E, Gloyn AL, Barton AC, et al. Translational genomics and precision medicine: moving from the lab to the clinic. Science, 2019, 365(6460): 1409-1413. |
83. | Wise AL, Manolio TA, Mensah GA, et al. Genomic medicine for undiagnosed diseases. Lancet, 2019, 394(10197): 533-540. |
84. | Freedman SB, Williamson-Urquhart S, Farion KJ, et al. Multicenter trial of a combination probiotic for children with gastroenteritis. N Engl J Med, 2018, 379(21): 2015-2026. |
85. | 张哲瑞, 陈凤容. 粪菌移植在临床应用中的研究进展. 医学研究生学报, 2020, 33(4): 428-432. |
86. | Aziz I, Palsson OS, Törnblom H, et al. Epidemiology, clinical characteristics, and associations for symptom-based Rome Ⅳ functional dyspepsia in adults in the USA, Canada, and the UK: a cross-sectional population-based study. Lancet Gastroenterol Hepatol, 2018, 3(4): 252-262. |
87. | Niesler B, Kuerten S, Demir IE, et al. Disorders of the enteric nervous system—a holistic view. Nat Rev Gastroenterol Hepatol, 2021, 18(6): 393-410. |
- 1. Chen RY, Kung VL, Das S, et al. Duodenal microbiota in stunted undernourished children with enteropathy. N Engl J Med, 2020, 383(4): 321-333.
- 2. Lindenbaum J, Kent TH, Sprinz H. Malabsorption and jejunitis in American Peace Corps volunteers in Pakistan. Ann Intern Med, 1966, 65(6): 1201-1209.
- 3. Tognini P. Gut microbiota: a potential regulator of neurodevelopment. Front Cell Neurosci, 2017, 11: 25. doi: 10.3389/fncel.2017.00025.
- 4. Bhattarai Y, Williams BB, Battaglioli EJ, et al. Gut microbiota-produced tryptamine activates an epithelial G-protein-coupled receptor to increase colonic secretion. Cell Host Microbe, 2018, 23(6): 775-785.
- 5. 傅志泉, 朱鹏翀, 李清林, 等. 大承气汤治疗胃肠功能障碍的 Meta 分析. 中华中医药学刊, 2017, 35(1): 169-172.
- 6. 刘海亮, 周荣斌. 肠功能障碍的发病机制认识. 中国急救医学, 2007, 27(10): 940-942.
- 7. 江志伟, 王刚. 延迟性术后肠麻痹的概念及防治策略. 山东大学学报(医学版), 2020, 58(5): 1-5.
- 8. Gero D, Gié O, Hübner M, et al. Postoperative ileus: in search of an international consensus on definition, diagnosis, and treatment. Langenbecks Arch Surg, 2017, 402(1): 149-158.
- 9. 刘丽蕾, 王湘英. 重症急性胰腺炎合并胃肠功能障碍的机制研究及诊治现状. 世界华人消化杂志, 2013, 21(34): 3828-3834.
- 10. Mazzotta E, Villalobos-Hernandez EC, Fiorda-Diaz J, et al. Postoperative ileus and postoperative gastrointestinal tract dysfunction: pathogenic mechanisms and novel treatment strategies beyond colorectal enhanced recovery after surgery protocols. Front Pharmacol, 2020, 11: 583422. doi: 10.3389/fphar.2020.583422.
- 11. Farmer AD, Holt CB, Downes TJ, et al. Pathophysiology, diagnosis, and management of opioid-induced constipation. Lancet Gastroenterol Hepatol, 2018, 3(3): 203-212.
- 12. Wiggins T. Benefits of laparoscopy in selected cases of small bowel obstruction. Lancet Gastroenterol Hepatol, 2019, 4(4): 257-259.
- 13. Smith K. Neurogastroenterology: ageing, ENS senescence and gastrointestinal motility. Nat Rev Gastroenterol Hepatol, 2014, 11(3): 141. doi: 10.1038/nrgastro.2014.12.
- 14. Brierley SM, Linden DR. Neuroplasticity and dysfunction after gastrointestinal inflammation. Nat Rev Gastroenterol Hepatol, 2014, 11(10): 611-627.
- 15. Loughman A, Ponsonby AL, O’Hely M, et al. Gut microbiota composition during infancy and subsequent behavioural outcomes. EBioMedicine, 2020, 52: 102640. doi: 10.1016/j.ebiom.2020.102640.
- 16. Ma TT, Yu SY, Li Y, et al. Randomised clinical trial: an assessment of acupuncture on specific meridian or specific acupoint vs. sham acupuncture for treating functional dyspepsia. Aliment Pharmacol Ther, 2012, 35(5): 552-561.
- 17. Wang Y, Zhang Y, Jiang R. Early traditional Chinese medicine bundle therapy for the prevention of sepsis acute gastrointestinal injury in elderly patients with severe sepsis. Sci Rep, 2017, 7: 46015. doi: 10.1038/srep46015.
- 18. Zhu MF, Xing X, Lei S, et al. Electroacupuncture at bilateral zusanli points (ST36) protects intestinal mucosal immune barrier in sepsis. Evid Based Complement Alternat Med, 2015, 2015: 639412. doi: 10.1155/2015/639412.
- 19. Hansen CT, Sørensen M, Møller C, et al. Effect of laxatives on gastrointestinal functional recovery in fast-track hysterectomy: a double-blind, placebo-controlled randomized study. Am J Obstet Gynecol, 2007, 196(4): 311.e1. doi: 10.1016/j.ajog.2006.10.902-7.
- 20. Vriesman MH, Koppen IJN, Camilleri M, et al. Management of functional constipation in children and adults. Nat Rev Gastroenterol Hepatol, 2020, 17(1): 21-39.
- 21. Gracie DJ, Hamlin PJ, Ford AC. The influence of the brain-gut axis in inflammatory bowel disease and possible implications for treatment. Lancet Gastroenterol Hepatol, 2019, 4(8): 632-642.
- 22. Black CJ, Yuan Y, Selinger CP, et al. Efficacy of soluble fibre, antispasmodic drugs, and gut-brain neuromodulators in irritable bowel syndrome: a systematic review and network meta-analysis. Lancet Gastroenterol Hepatol, 2020, 5(2): 117-131.
- 23. Gustafsson UO, Scott MJ, Schwenk W, et al. Guidelines for perioperative care in elective colonic surgery: Enhanced Recovery After Surgery (ERAS®) Society recommendations. Clin Nutr, 2012, 31(6): 783-800.
- 24. Payne SC, Furness JB, Stebbing MJ. Bioelectric neuromodulation for gastrointestinal disorders: effectiveness and mechanisms. Nat Rev Gastroenterol Hepatol, 2019, 16(2): 89-105.
- 25. Yuan JH, Song LM, Liu Y, et al. The effects of hyperbaric oxygen therapy on pelvic radiation induced gastrointestinal complications (rectal bleeding, diarrhea, and pain): a meta-analysis. Front Oncol, 2020, 10: 390. doi: 10.3389/fonc.2020.00390.
- 26. Gupta N, Kumar A, Harish RK, et al. Comparison of postoperative analgesia and opioid requirement with thoracic epidural vs. continuous rectus sheath infusion in midline incision laparotomies under general anaesthesia—A prospective randomised controlled study. Indian J Anaesth, 2020, 64(9): 750-755.
- 27. 林璋, 祖先鹏, 谢海胜, 等. 肠道菌群与人体疾病发病机制的研究进展. 药学学报, 2016, 51(6): 843-852.
- 28. Moeller AH, Li Y, Mpoudi Ngole E, et al. Rapid changes in the gut microbiome during human evolution. Proc Natl Acad Sci USA, 2014, 111(46): 16431-16435.
- 29. Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell, 2016, 164(3): 337-340.
- 30. Bäumler AJ, Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature, 2016, 535(7610): 85-93.
- 31. 肖锶瑶, 张纾难. 肠道菌群和呼吸系统疾病相关性的研究进展. 中国全科医学, 2021, 24(9): 1165-1172.
- 32. Foster JA, Rinaman L, Cryan JF. Stress & the gut-brain axis: regulation by the microbiome. Neurobiol Stress, 2017, 7: 124-136.
- 33. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 2010, 464(7285): 59-65.
- 34. Goodrich JK, Waters JL, Poole AC, et al. Human genetics shape the gut microbiome. Cell, 2014, 159(4): 789-799.
- 35. Zhang W, Qu W, Wang H, et al. Antidepressants fluoxetine and amitriptyline induce alterations in intestinal microbiota and gut microbiome function in rats exposed to chronic unpredictable mild stress. Transl Psychiatry, 2021, 11(1): 131. doi: 10.1038/s41398-021-01254-5.
- 36. Zhang Z, Tang H, Chen P, et al. Demystifying the manipulation of host immunity, metabolism, and extraintestinal tumors by the gut microbiome. Signal Transduct Target Ther, 2019, 4: 41. doi: 10.1038/s41392-019-0074-5.
- 37. Pluznick JL. The gut microbiota in kidney disease. Science, 2020, 369(6510): 1426-1427.
- 38. Clarke G, Grenham S, Scully P, et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry, 2013, 18(6): 666-673.
- 39. 陈坚, 邱志兵, 罗忠光, 等. 肠易激综合征患者 50 例的小肠细菌过度生长和低度炎症反应. 中华消化杂志, 2018, 38(11): 769-773.
- 40. 胡水清, 张玫. 小肠细菌过度生长与肠易激综合征相关性的研究进展. 重庆医学, 2015, 44(16): 2282-2284.
- 41. Saffouri GB, Shields-Cutler RR, Chen J, et al. Small intestinal microbial dysbiosis underlies symptoms associated with functional gastrointestinal disorders. Nat Commun, 2019, 10(1): 2012. doi: 10.1038/s41467-019-09964-7.
- 42. Singh Y, Trautwein C, Dhariwal A, et al. DJ-1 (Park7) affects the gut microbiome, metabolites and the development of innate lymphoid cells (ILCs). Sci Rep, 2020, 10(1): 16131. doi: 10.1038/s41598-020-72903-w.
- 43. Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease. Nat Commun, 2018, 9(1): 3294. doi: 10.1038/s41467-018-05470-4.
- 44. Gao J, Xu K, Liu H, et al. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front Cell Infect Microbiol, 2018, 8: 13. doi: 10.3389/fcimb.2018.00013.
- 45. 罗金燕. 5 羟色胺与胃肠运动及感知疾病—2005 年美国 DDW 巡礼. 中国实用内科杂志, 2006, 26(10): 723-724.
- 46. Kim SW, Kim S, Son M, et al. Melatonin controls microbiota in colitis by goblet cell differentiation and antimicrobial peptide production through Toll-like receptor 4 signalling. Sci Rep, 2020, 10(1): 2232. doi: 10.1038/s41598-020-59314-7.
- 47. Wang B, Zhu S, Liu Z, et al. Increased expression of colonic mucosal melatonin in patients with irritable bowel syndrome correlated with gut dysbiosis. Genom Proteom Bioinf, 2020, 18(6): 708-720.
- 48. 陈春球, 丁卫星, 李永渝. 褪黑素对胃肠运动的影响. 中国病理生理杂志, 2011, 27(11): 2185-2188.
- 49. 张磊, 刘芳娥, 胡文治, 等. 褪黑素对噪声应激大鼠胃肠传输功能的影响及其机制. 世界华人消化杂志, 2008, 16(2): 208-211.
- 50. Hemati K, Pourhanifeh MH, Dehdashtian E, et al. Melatonin and morphine: potential beneficial effects of co-use. Fundam Clin Pharmacol, 2021, 35(1): 25-39.
- 51. 丁亚萍, 许勤, 王建华, 等. 添加短链脂肪酸的 TPN 对术后化疗大鼠结肠粘膜细胞增殖作用的研究. 实用临床医药杂志, 2006, 10(9): 38-41.
- 52. 刘松珍, 张雁, 张名位, 等. 肠道短链脂肪酸产生机制及生理功能的研究进展. 广东农业科学, 2013, 40(11): 99-103.
- 53. Parada Venegas D, De la Fuente MK, Landskron G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol, 2019, 10: 277. doi: 10.3389/fimmu.2019.00277.
- 54. Dalile B, Van Oudenhove L, Vervliet B, et al. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol, 2019, 16(8): 461-478.
- 55. Aho VTE, Houser MC, Pereira PAB, et al. Relationships of gut microbiota, short-chain fatty acids, inflammation, and the gut barrier in Parkinson’s disease. Mol Neurodegener, 2021, 16(1): 6. doi: 10.1186/s13024-021-00427-6.
- 56. Gill PA, van Zelm MC, Muir JG, et al. Review article: short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders. Aliment Pharmacol Ther, 2018, 48(1): 15-34.
- 57. 赵心宇, 赵春艳, 孟秀香, 等. 丁酸类衍生物抗肿瘤作用机制的研究进展. 中国老年学杂志, 2007, 27(5): 495-496.
- 58. 徐仁应, 卞玉海, 万燕萍, 等. 短链脂肪酸与结直肠肿瘤细胞凋亡关系的研究. 肠外与肠内营养, 2013, 20(5): 259-262.
- 59. Scales BS, Huffnagle GB. The microbiome in wound repair and tissue fibrosis. J Pathol, 2013, 229(2): 323-331.
- 60. Jain U, Lai CW, Xiong S, et al. Temporal regulation of the bacterial metabolite deoxycholate during colonic repair is critical for crypt regeneration. Cell Host Microbe, 2018, 24(3): 353-363.
- 61. Wirbel J, Pyl PT, Kartal E, et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat Med, 2019, 25(4): 679-689.
- 62. Haffke M, Fehlmann D, Rummel G, et al. Structural basis of species-selective antagonist binding to the succinate receptor. Nature, 2019, 574(7779): 581-585.
- 63. De Vadder F, Kovatcheva-Datchary P, Zitoun C, et al. Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis. Cell Metab, 2016, 24(1): 151-157.
- 64. Mills EL, Pierce KA, Jedrychowski MP, et al. Accumulation of succinate controls activation of adipose tissue thermogenesis. Nature, 2018, 560(7716): 102-106.
- 65. Nadjsombati MS, McGinty JW, Lyons-Cohen MR, et al. Detection of succinate by intestinal tuft cells triggers a type 2 innate immune circuit. Immunity, 2018, 49(1): 33-41.
- 66. Haraguchi T, Kayashima T, Okazaki Y, et al. Cecal succinate elevated by some dietary polyphenols may inhibit colon cancer cell proliferation and angiogenesis. J Agric Food Chem, 2014, 62(24): 5589-5594.
- 67. Macias-Ceja DC, Ortiz-Masiá D, Salvador P, et al. Succinate receptor mediates intestinal inflammation and fibrosis. Mucosal Immunol, 2019, 12(1): 178-187.
- 68. Tannahill GM, Curtis AM, Adamik J, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature, 2013, 496(7444): 238-242.
- 69. Mills E, O’Neill LA. Succinate: a metabolic signal in inflammation. Trends Cell Biol, 2014, 24(5): 313-320.
- 70. 吕燕华, 梁剑平, 张丹丹, 等. 琥珀酸盐受体介导 Foxm1 表达促进肺纤维化. 重庆医科大学学报, 2021, 46(2): 206-211.
- 71. Mills EL, Kelly B, Logan A, et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell, 2016, 167(2): 457-470.
- 72. Garrote GL, Abraham AG, Rumbo M. Is lactate an undervalued functional component of fermented food products? Front Microbiol, 2015, 6: 629. doi: 10.3389/fmicb.2015.00629.
- 73. Kakisu E, Abraham AG, Farinati CT, et al. Lactobacillus plantarum isolated from Kefir protects Vero cells from cytotoxicity by type-Ⅱ shiga toxin from Escherichia coli O157:H7. J Dairy Res, 2013, 80(1): 64-71.
- 74. Golowczyc MA, Mobili P, Garrote GL, et al. Protective action of Lactobacillus Kefir carrying S-layer protein against Salmonella enterica serovar enteritidis. Int J Food Microbiol, 2007, 118(3): 264-273.
- 75. Lee YS, Kim TY, Kim Y, et al. Microbiota-derived lactate accelerates intestinal stem-cell-mediated epithelial development. Cell Host Microbe, 2018, 24(6): 833-846.
- 76. 张峻岭. 精准医疗背景下进展期胃癌抗血管靶向治疗的现状与挑战. 中国肿瘤生物治疗杂志, 2020, 27(7): 825-829.
- 77. Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med, 2015, 372(9): 793-795.
- 78. Precision medicine gets an edge. EBioMedicine, 2019, 50: 1-2.
- 79. 崔芳芳, 何贤英, 石金铭, 等. 临床医师精准医疗知信行现状及影响因素调查分析. 医学研究生学报, 2021, 34(3): 282-286.
- 80. Jameson JL, Longo DL. Precision medicine—personalized, problematic, and promising. N Engl J Med, 2015, 372(23): 2229-2234.
- 81. Llovet JM, Montal R, Sia D, et al. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol, 2018, 15(10): 599-616.
- 82. Zeggini E, Gloyn AL, Barton AC, et al. Translational genomics and precision medicine: moving from the lab to the clinic. Science, 2019, 365(6460): 1409-1413.
- 83. Wise AL, Manolio TA, Mensah GA, et al. Genomic medicine for undiagnosed diseases. Lancet, 2019, 394(10197): 533-540.
- 84. Freedman SB, Williamson-Urquhart S, Farion KJ, et al. Multicenter trial of a combination probiotic for children with gastroenteritis. N Engl J Med, 2018, 379(21): 2015-2026.
- 85. 张哲瑞, 陈凤容. 粪菌移植在临床应用中的研究进展. 医学研究生学报, 2020, 33(4): 428-432.
- 86. Aziz I, Palsson OS, Törnblom H, et al. Epidemiology, clinical characteristics, and associations for symptom-based Rome Ⅳ functional dyspepsia in adults in the USA, Canada, and the UK: a cross-sectional population-based study. Lancet Gastroenterol Hepatol, 2018, 3(4): 252-262.
- 87. Niesler B, Kuerten S, Demir IE, et al. Disorders of the enteric nervous system—a holistic view. Nat Rev Gastroenterol Hepatol, 2021, 18(6): 393-410.