1. |
Younossi ZM, Koenig AB, Abdelatif D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology, 2016, 64(1): 73-84.
|
2. |
Alkhouri N. Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): prevalence, therapeutic innovations, and stumbling blocks for clinical development. Expert Opin Investig Drugs, 2020, 29(2): 115-116.
|
3. |
Byrne CD, Targher G. NAFLD: a multisystem disease. J Hepatol, 2015, 62(1 Suppl): S47-S64.
|
4. |
Federico A, Zulli C, de Sio I, et al. Focus on emerging drugs for the treatment of patients with non-alcoholic fatty liver disease. World J Gastroenterol, 2014, 20(45): 16841-16857.
|
5. |
Farrell GC, Wong VW, Chitturi S. NAFLD in Asia—as common and important as in the West. Nat Rev Gastroenterol Hepatol, 2013, 10(5): 307-318.
|
6. |
Friedman SL, Neuschwander-Tetri BA, Rinella M, et al. Mechanisms of NAFLD development and therapeutic strategies. Nat Med, 2018, 24(7): 908-922.
|
7. |
Younossi Z, Anstee QM, Marietti M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol, 2018, 15(1): 11-20.
|
8. |
Estes C, Anstee QM, Arias-Loste MT, et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016-2030. J Hepatol, 2018, 69(4): 896-904.
|
9. |
Wu Y, Zheng Q, Zou B, et al. The epidemiology of NAFLD in Mainland China with analysis by adjusted gross regional domestic product: a meta-analysis. Hepatol Int, 2020, 14(2): 259-269.
|
10. |
Golabi P, Paik J, Hwang JP, et al. Prevalence and outcomes of non-alcoholic fatty liver disease (NAFLD) among Asian American adults in the United States. Liver Int, 2019, 39(4): 748-757.
|
11. |
Alvarez CS, Graubard BI, Thistle JE, et al. Attributable fractions of nonalcoholic fatty liver disease for mortality in the United States: Results from the third national health and nutrition examination survey with 27 years of follow-up. Hepatology, 2020, 72(2): 430-440.
|
12. |
Marrero JA, Fontana RJ, Su GL, et al. NAFLD may be a common underlying liver disease in patients with hepatocellular carcinoma in the United States. Hepatology, 2002, 36(6): 1349-1354.
|
13. |
Eichinger A, Danecka MK, Möglich T, et al. Secondary BH4 deficiency links protein homeostasis to regulation of phenylalanine metabolism. Hum Mol Genet, 2018, 27(10): 1732-1742.
|
14. |
Dobrowolski SF, Phua YL, Sudano C, et al. Phenylalanine hydroxylase deficient phenylketonuria comparative metabolomics identifies energy pathway disruption and oxidative stress. Mol Genet Metab, 2021 Apr 7, Online ahead of print.
|
15. |
van Wegberg A, Evers R, Burgerhof J, et al. Effect of BH4 on blood phenylalanine and tyrosine variations in patients with phenylketonuria. Mol Genet Metab, 2021, 133(1): 49-55.
|
16. |
Teramae A, Kobayashi Y, Kunimoto H, et al. The molecular basis of chemical chaperone therapy for oculocutaneous albinism type 1A. J Invest Dermatol, 2019, 139(5): 1143-1149.
|
17. |
Lee BE, Kim HY, Kim HJ, et al. O-GlcNAcylation regulates dopamine neuron function, survival and degeneration in Parkinson disease. Brain, 2020, 143(12): 3699-3716.
|
18. |
Held PK. Disorders of tyrosine catabolism. Mol Genet Metab, 2006, 88(2): 103-106.
|
19. |
Fu L, Dong SS, Xie YW, et al. Down-regulation of tyrosine aminotransferase at a frequently deleted region 16q22 contributes to the pathogenesis of hepatocellular carcinoma. Hepatology, 2010, 51(5): 1624-1634.
|
20. |
Nguyen TN, Nguyen HQ, Le DH. Unveiling prognostics biomarkers of tyrosine metabolism reprogramming in liver cancer by cross-platform gene expression analyses. PLoS One, 2020, 15(6): e0229276. doi: 10.1371/journal.pone.0229276.
|
21. |
Gil-Martínez J, Macias I, Unione L, et al. Therapeutic targeting of fumaryl acetoacetate hydrolase in hereditary tyrosinemia type Ⅰ. Int J Mol Sci, 2021, 22(4): 1789. doi: 10.3390/ijms22041789.
|
22. |
Ferreira GK, Scaini G, Carvalho-Silva M, et al. Effect of L-tyrosine in vitro and in vivo on energy metabolism parameters in brain and liver of young rats. Neurotox Res, 2013, 23(4): 327-335.
|
23. |
Wypych TP, Pattaroni C, Perdijk O, et al. Microbial metabolism of L-tyrosine protects against allergic airway inflammation. Nat Immunol, 2021, 22(3): 279-286.
|
24. |
Tricò D, Biancalana E, Solini A. Protein and amino acids in nonalcoholic fatty liver disease. Curr Opin Clin Nutr Metab Care, 2021, 24(1): 96-101.
|
25. |
Sano A, Kakazu E, Morosawa T, et al. The profiling of plasma free amino acids and the relationship between serum albumin and plasma-branched chain amino acids in chronic liver disease: a single-center retrospective study. J Gastroenterol, 2018, 53(8): 978-988.
|
26. |
Zhai HL, Wang NJ, Han B, et al. Low vitamin D levels and non-alcoholic fatty liver disease, evidence for their independent association in men in East China: a cross-sectional study (Survey on Prevalence in East China for Metabolic Diseases and Risk Factors (SPECT-China). Br J Nutr, 2016, 115(8): 1352-1359.
|
27. |
Yamakado M, Tanaka T, Nagao K, et al. Plasma amino acid profile associated with fatty liver disease and co-occurrence of metabolic risk factors. Sci Rep, 2017, 7(1): 14485. doi: 10.1038/s41598-017-14974-w.
|
28. |
Hasegawa T, Iino C, Endo T, et al. Changed amino acids in NAFLD and liver fibrosis: A large cross-sectional study without influence of insulin resistance. Nutrients, 2020, 12(5): 1450. doi: 10.3390/nu12051450.
|
29. |
De Bandt JP, Jegatheesan P, Tennoune-El-Hafaia N. Muscle loss in chronic liver diseases: the example of nonalcoholic liver disease. Nutrients, 2018, 10(9): 1195. doi: 10.3390/nu10091195.
|
30. |
Gaggini M, Carli F, Rosso C, et al. Altered amino acid concentrations in NAFLD: Impact of obesity and insulin resistance. Hepatology, 2018, 67(1): 145-158.
|
31. |
Jin R, Banton S, Tran VT, et al. Amino acid metabolism is altered in adolescents with nonalcoholic fatty liver disease—An untargeted, high resolution metabolomics study. J Pediatr, 2016, 172: 14-19.
|
32. |
Zhao P, Sun X, Chaggan C, et al. An AMPK-caspase-6 axis controls liver damage in nonalcoholic steatohepatitis. Science, 2020, 367(6478): 652-660.
|
33. |
Kawanaka M, Nishino K, Oka T, et al. Tyrosine levels are associated with insulin resistance in patients with nonalcoholic fatty liver disease. Hepat Med, 2015, 7: 29-35.
|
34. |
Pietzner M, Budde K, Homuth G, et al. Hepatic steatosis is associated with adverse molecular signatures in subjects without diabetes. J Clin Endocrinol Metab, 2018, 103(10): 3856-3868.
|
35. |
Sano A, Kakazu E, Hamada S, et al. Steatotic hepatocytes release mature VLDL via methionine and tyrosine metabolism in a Keap1-Nrf2 dependent manner. Hepatology, 2021, 74(3):1271-1286.
|
36. |
Kim DJ, Yoon S, Ji SC, et al. Ursodeoxycholic acid improves liver function via phenylalanine/tyrosine pathway and microbiome remodelling in patients with liver dysfunction. Sci Rep, 2018, 8(1): 11874. doi: 10.1038/s41598-018-30349-1.
|
37. |
Guo Z, Li M, Han B, et al. Association of non-alcoholic fatty liver disease with thyroid function: A systematic review and meta-analysis. Dig Liver Dis, 2018, 50(11): 1153-1162.
|
38. |
Ritter MJ, Amano I, Hollenberg AN. Thyroid hormone signaling and the liver. Hepatology, 2020, 72(2): 742-752.
|
39. |
Sinha RA, Bruinstroop E, Singh BK, et al. Nonalcoholic fatty liver disease and hypercholesterolemia: roles of thyroid hormones, metabolites, and agonists. Thyroid, 2019, 29(9): 1173-1191.
|
40. |
Ness GC, Chambers CM. Feedback and hormonal regulation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase: the concept of cholesterol buffering capacity. Proc Soc Exp Biol Med, 2000, 224(1): 8-19.
|
41. |
Zhong S, Li L, Liang N, et al. Acetaldehyde dehydrogenase 2 regulates HMG-CoA reductase stability and cholesterol synthesis in the liver. Redox Biol, 2021, 41: 101919. doi: 10.1016/j.redox.2021.101919.
|
42. |
Lopez D, Abisambra Socarrás JF, Bedi M, et al. Activation of the hepatic LDL receptor promoter by thyroid hormone. Biochim Biophys Acta, 2007, 1771(9): 1216-1225.
|
43. |
Brenta G, Berg G, Miksztowicz V, et al. Atherogenic lipoproteins in subclinical hypothyroidism and their relationship with hepatic lipase activity: Response to replacement treatment with levothyroxine. Thyroid, 2016, 26(3): 365-372.
|
44. |
Jackson-Hayes L, Song S, Lavrentyev EN, et al. A thyroid hormone response unit formed between the promoter and first intron of the carnitine palmitoyltransferase-Iα gene mediates the liver-specific induction by thyroid hormone. J Biol Chem, 2003, 278(10): 7964-7972.
|
45. |
Dai J, Liang K, Zhao S, et al. Chemoproteomics reveals baicalin activates hepatic CPT1 to ameliorate diet-induced obesity and hepatic steatosis. Proc Natl Acad Sci U S A, 2018, 115(26): E5896-E5905. doi: 10.1073/pnas.1801745115.
|
46. |
Wu J, Wang C, Li S, et al. Thyroid hormone-responsive SPOT 14 homolog promotes hepatic lipogenesis, and its expression is regulated by liver X receptor α through a sterol regulatory element-binding protein 1c-dependent mechanism in mice. Hepatology, 2013, 58(2): 617-628.
|
47. |
Hashimoto K, Matsumoto S, Yamada M, et al. Liver X receptor-alpha gene expression is positively regulated by thyroid hormone. Endocrinology, 2007, 148(10): 4667-4675.
|
48. |
Cha JY, Repa JJ. The liver X receptor (LXR) and hepatic lipogenesis. The carbohydrate-response element-binding protein is a target gene of LXR. J Biol Chem, 2007, 282(1): 743-751.
|
49. |
Gnoni GV, Rochira A, Leone A, et al. 3, 5, 3′ triiodo-L-thyronine induces SREBP-1 expression by non-genomic actions in human HEP G2 cells. J Cell Physiol, 2012, 227(6): 2388-2397.
|
50. |
Hashimoto K, Ishida E, Matsumoto S, et al. Carbohydrate response element binding protein gene expression is positively regulated by thyroid hormone. Endocrinology, 2009, 150(7): 3417-3424.
|
51. |
Villanueva-Ortega E, Méndez-García LA, Garibay-Nieto GN, et al. Growth hormone ameliorates high glucose-induced steatosis on in vitro cultured human HepG2 hepatocytes by inhibiting de novo lipogenesis via ChREBP and FAS suppression. Growth Horm IGF Res, Aug-Oct 2020, 53-54: 101332. Epub 2020 Jul 15. doi: 10.1016/j.ghir.2020.101332.
|
52. |
Shimada M, Ichigo Y, Shirouchi B, et al. Treatment with myo-inositol attenuates binding of the carbohydrate-responsive element-binding protein to the ChREBP-β and FASN genes in rat nonalcoholic fatty liver induced by high-fructose diet. Nutr Res, 2019, 64: 49-55.
|
53. |
Deng J, Peng M, Zhou S, et al. Metformin targets clusterin to control lipogenesis and inhibit the growth of bladder cancer cells through SREBP-1c/FASN axis. Signal Transduct Target Ther, 2021, 6(1): 98. doi: 10.1038/s41392-021-00493-8.
|
54. |
Santana-Farré R, Mirecki-Garrido M, Bocos C, et al. Influence of neonatal hypothyroidism on hepatic gene expression and lipid metabolism in adulthood. PLoS One, 2012, 7(5): e37386. doi: 10.1371/journal.pone.0037386.
|
55. |
Perra A, Simbula G, Simbula M, et al. Thyroid hormone (T3) and TRbeta agonist GC-1 inhibit/reverse nonalcoholic fatty liver in rats. FASEB J, 2008, 22(8): 2981-2989.
|