1. |
Rizvi S, Gores GJ. Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology, 2013, 145(6): 1215-1229.
|
2. |
Labib PL, Goodchild G, Pereira SP. Molecular pathogenesis of cholangiocarcinoma. BMC Cancer, 2019, 19(1): 185. doi: 10.1186/s12885-019-5391-0.
|
3. |
Bergquist A, von Seth E. Epidemiology of cholangiocarcinoma. Best Pract Res Clin Gastroenterol, 2015, 29(2): 221-232.
|
4. |
Morizane C, Ueno M, Ikeda M, et al. New developments in systemic therapy for advanced biliary tract cancer. Jpn J Clin Oncol, 2018, 48(8): 703-711.
|
5. |
Bréchon M, Dior M, Dréanic J, et al. Addition of an antiangiogenic therapy, bevacizumab, to gemcitabine plus oxaliplatin improves survival in advanced biliary tract cancers. Invest New Drugs, 2018, 36(1): 156-162.
|
6. |
Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med, 2015, 373(17): 1627-1639.
|
7. |
Sabbatino F, Villani V, Yearley JH, et al. PD-L1 and HLA class Ⅰ antigen expression and clinical course of the disease in intrahepatic cholangiocarcinoma. Clin Cancer Res, 2016, 22(2): 470-478.
|
8. |
Fuchs CS, Doi T, Jang RW, et al. Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: phase 2 clinical KEYNOTE-059 trial. JAMA Oncol, 2018, 4(5): e180013. doi: 10.1001/jamaoncol.2018.0013.
|
9. |
Piha-Paul SA, Oh DY, Ueno M, et al. Efficacy and safety of pembrolizumab for the treatment of advanced biliary cancer: Results from the KEYNOTE-158 and KEYNOTE-028 studies. Int J Cancer, 2020, 147(8): 2190-2198.
|
10. |
Doi T, Piha-Paul SA, Jalal SI, et al. Safety and antitumor activity of the anti-programmed death-1 antibody pembrolizumab in patients with advanced esophageal carcinoma. J Clin Oncol, 2018, 36(1): 61-67.
|
11. |
Kim RD, Chung V, Alese OB, et al. A phase 2 multi-institutional study of nivolumab for patients with advanced refractory biliary tract cancer. JAMA Oncol, 2020, 6(6): 888-894.
|
12. |
Czink E, Kloor M, Goeppert B, et al. Successful immune checkpoint blockade in a patient with advanced stage microsatellite-unstable biliary tract cancer. Cold Spring Harb Mol Case Stud, 2017, 3(5): a001974. doi: 10.1101/mcs.a001974. Print 2017 Sep.
|
13. |
Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med, 2015, 372(26): 2509-2520.
|
14. |
Lim YJ, Koh J, Kim K, et al. Clinical implications of cytotoxic t lymphocyte antigen-4 expression on tumor cells and tumor-infiltrating lymphocytes in extrahepatic bile duct cancer patients undergoing surgery plus adjuvant chemoradiotherapy. Target Oncol, 2017, 12(2): 211-218.
|
15. |
Wang Z, Cao YJ. Adoptive cell therapy targeting neoantigens: a frontier for cancer research. Front Immunol, 2020, 11: 176. doi: 10.3389/fimmu.2020.00176.
|
16. |
Tran E, Turcotte S, Gros A, et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science, 2014, 344(6184): 641-645.
|
17. |
Bielamowicz K, Fousek K, Byrd TT, et al. Trivalent CAR T cells overcome interpatient antigenic variability in glioblastoma. Neuro Oncol, 2018, 20(4): 506-518.
|
18. |
Feng KC, Guo YL, Liu Y, et al. Cocktail treatment with EGFR-specific and CD133-specific chimeric antigen receptor-modified T cells in a patient with advanced cholangiocarcinoma. J Hematol Oncol, 2017, 10(1): 4. doi: 10.1186/s13045-016-0378-7.
|
19. |
Marks EI, Yee NS. Immunotherapeutic approaches in biliary tract carcinoma: Current status and emerging strategies. World J Gastrointest Oncol, 2015, 7(11): 338-346.
|
20. |
Nakatsuka S, Oji Y, Horiuchi T, et al. Immunohistochemical detection of WT1 protein in a variety of cancer cells. Mod Pathol, 2006, 19(6): 804-814.
|
21. |
Park SY, Roh SJ, Kim YN, et al. Expression of MUC1, MUC2, MUC5AC and MUC6 in cholangiocarcinoma: prognostic impact. Oncol Rep, 2009, 22(3): 649-657.
|
22. |
Kaida M, Morita-Hoshi Y, Soeda A, et al. Phase 1 trial of Wilms tumor 1 (WT1) peptide vaccine and gemcitabine combination therapy in patients with advanced pancreatic or biliary tract cancer. J Immunother, 2011, 34(1): 92-99.
|
23. |
Aruga A, Takeshita N, Kotera Y, et al. Phase Ⅰ clinical trial of multiple-peptide vaccination for patients with advanced biliary tract cancer. J Transl Med, 2014, 12: 61. doi: 10.1186/1479-5876-12-61.
|
24. |
Kobayashi M, Sakabe T, Abe H, et al. Dendritic cell-based immunotherapy targeting synthesized peptides for advanced biliary tract cancer. J Gastrointest Surg, 2013, 17(9): 1609-1617.
|
25. |
Li H, Qin S, Liu Y, et al. Camrelizumab combined with FOLFOX4 regimen as first-line therapy for advanced hepatocellular carcinomas: A sub-cohort of a multicenter phase Ⅰb/Ⅱ study. Drug Des Devel Ther, 2021, 15: 1873-1882.
|
26. |
Liu X, Yao J, Song L, et al. Local and abscopal responses in advanced intrahepatic cholangiocarcinoma with low TMB, MSS, pMMR and negative PD-L1 expression following combined therapy of SBRT with PD-1 blockade. J Immunother Cancer, 2019, 7(1): 204. doi: 10.1186/s40425-019-0692-z.
|
27. |
Simone V, Brunetti O, Lupo L, et al. Targeting angiogenesis in biliary tract cancers: An open option. Int J Mol Sci, 2017, 18(2): 418. doi: 10.3390/ijms18020418.
|
28. |
Sun W, Patel A, Normolle D, et al. A phase 2 trial of regorafenib as a single agent in patients with chemotherapy-refractory, advanced, and metastatic biliary tract adenocarcinoma. Cancer, 2019, 125(6): 902-909.
|
29. |
Arkenau HT, Martin-Liberal J, Calvo E, et al. Ramucirumab plus pembrolizumab in patients with previously treated advanced or metastatic biliary tract cancer: nonrandomized, open-label, phase i trial (JVDF). Oncologist, 2018, 23(12): 1407-e136. doi: 10.1634/theoncologist.2018-0044.
|