1. |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
|
2. |
郑荣寿, 孙可欣, 张思维, 等. 2015 年中国恶性肿瘤流行情况分析. 中华肿瘤杂志, 2019, 41(1): 19-28.
|
3. |
国家卫生健康委办公厅发布 2021 年国家医疗质量安全改进目标. 上海护理, 2021, 21(3): 6.
|
4. |
国家卫生健康委员会. 胃癌诊疗规范 (2018 年版). 中华消化病与影像杂志 (电子版), 2019, 9(3): 118-144.
|
5. |
Amin MB, Edge SB, Greene FL, et al. AJCC Cancer Staging Manual. 8th Editioned. New York: Springer, 2017: 203-220.
|
6. |
有上貴明, 柳田茂寛, 夏越祥次. 第 15 版胃癌取扱い規約のボイント. 日本臨牀, 2018.
|
7. |
梁盼, 赵曦曈, 赵慧萍, 等. CT 对胃癌诊断和临床应用价值. 中华放射学杂志, 2020, 54(11): 1141-1144.
|
8. |
刘洋, 高剑波, 岳松伟, 等. 胃癌 MSCT 表现与 HER2 基因表达情况的相关性研究. 实用放射学杂志, 2015, 31(3): 427-430.
|
9. |
Lordick F, Mariette C, Haustermans K, et al. Oesophageal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol, 2016, 27(suppl 5): v50-v57.
|
10. |
Lee G, I H, Kim SJ, et al. Clinical implication of PET/MR imaging in preoperative esophageal cancer staging: comparison with PET/CT, endoscopic ultrasonography, and CT. J Nucl Med, 2014, 55(8): 1242-1247.
|
11. |
Materka A, Strzelecki M. Texture analysis methods-A review. Technical University of Lodz, Institute of Electronics, COST B11 report, Brussels 1998.
|
12. |
刘伟, 李月卿. 医学图像纹理分析综述. 泰山医学院学报, 2006, 27(1): 78-80.
|
13. |
El Naqa I, Grigsby P, Apte A, et al. Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recognit, 2009, 42(6): 1162-1171.
|
14. |
Agner SC, Soman S, Libfeld E, et al. Textural kinetics: a novel dynamic contrast-enhanced (DCE)-MRI feature for breast lesion classification. J Digit Imaging, 2011, 24(3): 446-463.
|
15. |
Karahaliou A, Vassiou K, Arikidis NS, et al. Assessing heterogeneity of lesion enhancement kinetics in dynamic contrast-enhanced MRI for breast cancer diagnosis. Br J Radiol, 2010, 83(988): 296-309.
|
16. |
Ganeshan B, Panayiotou E, Burnand K, et al. Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival. Eur Radiol, 2012, 22(4): 796-802.
|
17. |
Rao SX, Lambregts DM, Schnerr RS, et al. Whole-liver CT texture analysis in colorectal cancer: Does the presence of liver metastases affect the texture of the remaining liver? United European Gastroenterol J, 2014, 2(6): 530-538.
|
18. |
Castellano G, Bonilha L, Li LM, et al. Texture analysis of medical images. Clin Radiol, 2004, 59(12): 1061-1069.
|
19. |
Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images are more than pictures, they are data. Radiology, 2016, 278(2): 563-577.
|
20. |
Lubner MG, Smith AD, Sandrasegaran K, et al. CT Texture analysis: Definitions, applications, biologic correlates, and challenges. Radiographics, 2017, 37(5): 1483-1503.
|
21. |
Court LE, Fave X, Mackin D, et al. Computational resources for radiomics. Transl Cancer Res, 2016, 5(4): 340-348.
|
22. |
Szczypiński PM, Strzelecki M, Materka A, et al. MaZda–a software package for image texture analysis. Comput Methods Programs Biomed, 2009, 94(1): 66-76.
|
23. |
Brusan A, Durmaz FA, Yaman A, et al. iBEX: Modular open-source software for digital radiography. J Digit Imaging, 2020, 33(3): 708-721.
|
24. |
Fang YH, Lin CY, Shih MJ, et al. Development and evaluation of an open-source software package “CGITA” for quantifying tumor heterogeneity with molecular images. Biomed Res Int, 2014, 2014: 248505.
|
25. |
Lee HN, Kim JI, Shin SY, et al. Combined CT texture analysis and nodal axial ratio for detection of nodal metastasis in esophageal cancer. Br J Radiol, 2020, 93(1111): 20190827.
|
26. |
Fedorov A, Beichel R, Kalpathy-Cramer J, et al. 3D slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging, 2012, 30(9): 1323-1341.
|
27. |
Yushkevich PA, Gerig G. ITK-SNAP: An intractive medical image segmentation tool to meet the need for expert-guided segmentation of complex medical images. IEEE Pulse, 2017, 8(4): 54-57.
|
28. |
Rode JB, Ringel MM. Statistical software output in the classroom: A comparison of R and SPSS. Teach Psychol, 2019, 46(4): 319-327.
|
29. |
Smith TC, Frank E. Introducing machine learning concepts with WEKA. Methods Mol Biol, 2016, 1418: 353-378.
|
30. |
范园, 李宏江, 陈修远, 等. CT 纹理分析在胃癌中的应用研究. 华西医学, 2020, 35(11): 1404-1408.
|
31. |
李晓乐. CT 纹理分析在胃癌中的应用研究进展. 长治医学院学报, 2020, 34(6): 478-480.
|
32. |
Sah BR, Owczarczyk K, Siddique M, et al. Radiomics in esophageal and gastric cancer. Abdom Radiol (NY), 2019, 44(6): 2048-2058.
|
33. |
Ba-Ssalamah A, Muin D, Schernthaner R, et al. Texture-based classification of different gastric tumors at contrast-enhanced CT. Eur J Radiol, 2013, 82(10): e537-e543.
|
34. |
Sun YW, Ji CF, Wang H, et al. Differentiating gastric cancer and gastric lymphoma using texture analysis (TA) of positron emission tomography (PET). Chin Med J (Engl), 2020, 134(4): 439-447.
|
35. |
Ali H, Sharif M, Yasmin M, et al. Computer-based classification of chromoendoscopy images using homogeneous texture descriptors. Comput Biol Med, 2017, 88: 84-92.
|
36. |
Ali H, Yasmin M, Sharif M, et al. Computer assisted gastric abnormalities detection using hybrid texture descriptors for chromoendoscopy images. Comput Methods Programs Biomed, 2018, 157: 39-47.
|
37. |
Hiroyasu T, Hayashinuma K, Ichikawa H, et al. Preprocessing with image denoising and histogram equalization for endoscopy image analysis using texture analysis. Annu Int Conf IEEE Eng Med Biol Soc, 2015, 2015: 789-792.
|
38. |
Xu F, Ma X, Wang Y, et al. CT texture analysis can be a potential tool to differentiate gastrointestinal stromal tumors without KIT exon 11 mutation. Eur J Radiol, 2018, 107: 90-97.
|
39. |
沈健, 宋斌, 储海瑞, 等. CT 检查纹理分析对胃肠间质瘤 c-KIT Exon 11 基因突变的预测价值. 中华消化外科杂志, 2020, 19(12): 1324-1331.
|
40. |
任采月, 王升平, 任敏, 等. CT 纹理分析在胃肠间质瘤危险度分级价值的初步研究. 实用放射学杂志, 2019, 35(2): 228-231.
|
41. |
刘静妮, 翟亚楠, 郑悠, 等. 计算机断层增强扫描图像结合动脉期纹理分析对胃肠道间质瘤危险度分级的评估价值. 中华消化杂志, 2020, 40(12): 831-836.
|
42. |
李双, 龙学颖, 刘慧. 胃间质瘤 CT 影像特征及纹理参数与危险度分级的相关性. 中南大学学报(医学版), 2019, 44(3): 264-270.
|
43. |
Lee MW, Kim GH. Diagnosing gastric mesenchymal tumors by digital endoscopic ultrasonography image analysis. Clin Endosc, 2021, 54(3): 324-328.
|
44. |
Liu S, Shi H, Ji C, et al. Preoperative CT texture analysis of gastric cancer: correlations with postoperative TNM staging. Clin Radiol, 2018, 73(8): 756.e1-756.e9.
|
45. |
Giganti F, Antunes S, Salerno A, et al. Gastric cancer: texture analysis from multidetector computed tomography as a potential preoperative prognostic biomarker. Eur Radiol, 2017, 27(5): 1831-1839.
|
46. |
Yardimci AH, Sel I, Bektas CT, et al. Computed tomography texture analysis in patients with gastric cancer: a quantitative imaging biomarker for preoperative evaluation before neoadjuvant chemotherapy treatment. Jpn J Radiol, 2020, 38(6): 553-560.
|
47. |
Yardımcı AH, Koçak B, Turan Bektaş C, et al. Tubular gastric adenocarcinoma: machine learning-based CT texture analysis for predicting lymphovascular and perineural invasion. Diagn Interv Radiol, 2020, 26(6): 515-522.
|
48. |
Liu S, Zheng H, Zhang Y, et al. Whole-volume apparent diffusion coefficient-based entropy parameters for assessment of gastric cancer aggressiveness. J Magn Reson Imaging, 2018, 47(1): 168-175.
|
49. |
Qiao X, Li Z, Li L, et al. Preoperative T2-weighted MR imaging texture analysis of gastric cancer: prediction of TNM stages. Abdom Radiol (NY), 2021, 46(4): 1487-1497.
|
50. |
王小雷, 高玉青, 徐鹤, 等. 基于能谱 CT 纹理分析在预测胃癌术前淋巴结转移中的价值. 蚌埠医学院学报, 2021, 46(1): 21-24.
|
51. |
Kim HY, Kim YH, Yun G, et al. Could texture features from preoperative CT image be used for predicting occult peritoneal carcinomatosis in patients with advanced gastric cancer? PLoS One, 2018, 13(3): e0194755.
|
52. |
Liu S, Liu S, Ji C, et al. Application of CT texture analysis in predicting histopathological characteristics of gastric cancers. Eur Radiol, 2017, 27(12): 4951-4959.
|
53. |
Liu S, Shi H, Ji C, et al. CT textural analysis of gastric cancer: correlations with immunohistochemical biomarkers. Sci Rep, 2018, 8(1): 11844.
|
54. |
Yoon SH, Kim YH, Lee YJ, et al. Tumor heterogeneity in human epidermal growth factor receptor 2 (HER2)-positive advanced gastric cancer assessed by CT texture analysis: association with survival after trastuzumab treatment. PLoS One, 2016, 11(8): e0161278.
|
55. |
Giganti F, Marra P, Ambrosi A, et al. Pre-treatment MDCT-based texture analysis for therapy response prediction in gastric cancer: Comparison with tumour regression grade at final histology. Eur J Radiol, 2017, 90: 129-137.
|
56. |
陈佳, 丁茜琳, 王铮, 等. 基于常规 CT 图像的纹理分析在进展期胃癌新辅助化疗疗效预测中的价值. 临床放射学杂志, 2019, 38(11): 2100-2105.
|
57. |
Jiang Y, Chen C, Xie J, et al. Radiomics signature of computed tomography imaging for prediction of survival and chemotherapeutic benefits in gastric cancer. EBioMedicine, 2018, 36: 171-182.
|
58. |
Jiang Y, Yuan Q, Lv W, et al. Radiomic signature of 18F fluorodeoxyglucose PET/CT for prediction of gastric cancer survival and chemotherapeutic benefits. Theranostics, 2018, 8(21): 5915-5928.
|
59. |
Berenguer R, Pastor-Juan MDR, Canales-Vázquez J, et al. Radiomics of CT features may be nonreproducible and redundant: Influence of CT acquisition parameters. Radiology, 2018, 288(2): 407-415.
|
60. |
Meyer M, Ronald J, Vernuccio F, et al. Reproducibility of CT radiomic features within the same patient: Influence of radiation dose and CT reconstruction settings. Radiology, 2019, 293(3): 583-591.
|