1. |
Du J, Li H, Xu S, et al. A review of organophosphorus flame retardants (OPFRs): occurrence, bioaccumulation, toxicity, and organism exposure. Environ Sci Pollut Res Int, 2019, 26(22): 22126-22136.
|
2. |
Stapleton HM, Klosterhaus S, Keller A, et al. Identification of flame retardants in polyurethane foam collected from baby products. Environ Sci Technol, 2011, 45(12): 5323-5331.
|
3. |
符元证, 史亚利, 逯晓波, 等. 有机磷酸酯阻燃剂暴露的毒性效应及生物标志物研究进展. 中华预防医学杂志, 2020, 54(10): 1152-1160.
|
4. |
Wang R, Tang J, Xie Z, et al. Occurrence and spatial distribution of organophosphate ester flame retardants and plasticizers in 40 rivers draining into the Bohai Sea, north China. Environ Pollut, 2015, 198: 172-178.
|
5. |
Saillenfait AM, Ndaw S, Robert A, et al. Recent biomonitoring reports on phosphate ester flame retardants: a short review. Arch Toxicol, 2018, 92(9): 2749-2778.
|
6. |
He C, Wang X, Tang S, et al. Concentrations of organophosphate esters and their specific metabolites in food in Southeast Queensland, Australia: Is dietary exposure an important pathway of organophosphate esters and their metabolites? Environ Sci Technol, 2018, 52(21): 12765-12773.
|
7. |
Li Y, Yao C, Zheng Q, et al. Occurrence and ecological implications of organophosphate triesters and diester degradation products in wastewater, river water, and tap water. Environ Pollut, 2020, 259: 113810. doi: 10.1016/j.envpol.2019.113810.
|
8. |
Xing L, Zhang Q, Sun X, et al. Occurrence, distribution and risk assessment of organophosphate esters in surface water and sediment from a shallow freshwater Lake, China. Sci Total Environ, 2018, 636: 632-640.
|
9. |
Li J, Zhao L, Letcher RJ, et al. A review on organophosphate Ester (OPE) flame retardants and plasticizers in foodstuffs: Levels, distribution, human dietary exposure, and future directions. Environ Int, 2019, 127: 35-51.
|
10. |
Li J, He J, Li Y, et al. Assessing the threats of organophosphate esters (flame retardants and plasticizers) to drinking water safety based on USEPA oral reference dose (RfD) and oral cancer slope factor (SFO). Water Res, 2019, 154: 84-93.
|
11. |
Lee S, Jeong W, Kannan K, et al. Occurrence and exposure assessment of organophosphate flame retardants (OPFRs) through the consumption of drinking water in Korea. Water Res, 2016, 103: 182-188.
|
12. |
Park H, Choo G, Kim H, et al. Evaluation of the current contamination status of PFASs and OPFRs in South Korean tap water associated with its origin. Sci Total Environ, 2018, 634: 1505-1512.
|
13. |
Kim UJ, Kannan K. Occurrence and distribution of organophosphate flame retardants/plasticizers in surface waters, tap water, and rainwater: Implications for human exposure. Environ Sci Technol, 2018, 52(10): 5625-5633.
|
14. |
Li J, Yu N, Zhang B, et al. Occurrence of organophosphate flame retardants in drinking water from China. Water Res, 2014, 54: 53-61.
|
15. |
Ding J, Shen X, Liu W, et al. Occurrence and risk assessment of organophosphate esters in drinking water from Eastern China. Sci Total Environ, 2015, 538: 959-965.
|
16. |
Poma G, Sales C, Bruyland B, et al. Occurrence of organophosphorus flame retardants and plasticizers (PFRs) in Belgian foodstuffs and estimation of the dietary exposure of the adult population. Environ Sci Technol, 2018, 52(4): 2331-2338.
|
17. |
Poma G, Glynn A, Malarvannan G, et al. Dietary intake of phosphorus flame retardants (PFRs) using Swedish food market basket estimations. Food Chem Toxicol, 2017, 100: 1-7.
|
18. |
Zhao L, Jian K, Su H, et al. Organophosphate esters (OPEs) in Chinese foodstuffs: Dietary intake estimation via a market basket method, and suspect screening using high-resolution mass spectrometry. Environ Int, 2019, 128: 343-352.
|
19. |
Zhang X, Zou W, Mu L, et al. Rice ingestion is a major pathway for human exposure to organophosphate flame retardants (OPFRs) in China. J Hazard Mater, 2016, 318: 686-693.
|
20. |
Ding J, Deng T, Xu M, et al. Residuals of organophosphate esters in foodstuffs and implication for human exposure. Environ Pollut, 2018, 233: 986-991.
|
21. |
Wei GL, Li DQ, Zhuo MN, et al. Organophosphorus flame retardants and plasticizers: sources, occurrence, toxicity and human exposure. Environ Pollut, 2015, 196: 29-46.
|
22. |
Wang C, Chen H, Li H, et al. Review of emerging contaminant tris(1, 3-dichloro-2-propyl)phosphate: Environmental occurrence, exposure, and risks to organisms and human health. Environ Int, 2020, 143: 105946. doi: 10.1016/j.envint.2020.105946.
|
23. |
Yan Z, Jin X, Liu D, et al. The potential connections of adverse outcome pathways with the hazard identifications of typical organophosphate esters based on toxicity mechanisms. Chemosphere, 2021, 266: 128989. doi: 10.1016/j.chemosphere.2020.128989.
|
24. |
Abou-Elwafa Abdallah M, Pawar G, Harrad S. Human dermal absorption of chlorinated organophosphate flame retardants; implications for human exposure. Toxicol Appl Pharmacol, 2016, 291: 28-37.
|
25. |
Wang G, Liu Y, Zhao X, et al. Geographical distributions and human exposure of organophosphate esters in college library dust from Chinese cities. Environ Pollut, 2019, 255(Pt 2): 113332. doi: 10.1016/j.envpol.2019.113332.
|
26. |
Cao D, Lv K, Gao W, et al. Presence and human exposure assessment of organophosphate flame retardants (OPEs) in indoor dust and air in Beijing, China. Ecotoxicol Environ Saf, 2019, 169: 383-391.
|
27. |
Hu YJ, Bao LJ, Huang CL, et al. A comprehensive risk assessment of human inhalation exposure to atmospheric halogenated flame retardants and organophosphate esters in an urban zone. Environ Pollut, 2019, 252(Pt B): 1902-1909.
|
28. |
Chen Y, Jiang L, Lu S, et al. Organophosphate ester and phthalate ester metabolites in urine from primiparas in Shenzhen, China: Implications for health risks. Environ Pollut, 2019, 247: 944-952.
|
29. |
Gao D, Yang J, Bekele TG, et al. Organophosphate esters in human serum in Bohai Bay, North China. Environ Sci Pollut Res Int, 2020, 27(3): 2721-2729.
|
30. |
Wang S, Romanak KA, Hendryx M, et al. Association between thyroid function and exposures to brominated and organophosphate flame retardants in rural central Appalachia. Environ Sci Technol, 2020, 54(1): 325-334.
|
31. |
Preston EV, McClean MD, Claus Henn B, et al. Associations between urinary diphenyl phosphate and thyroid function. Environ Int, 2017, 101: 158-164.
|
32. |
Hoffman K, Stapleton HM, Lorenzo A, et al. Prenatal exposure to organophosphates and associations with birthweight and gestational length. Environ Int, 2018, 116: 248-254.
|
33. |
Luo D, Liu W, Tao Y, et al. Prenatal exposure to organophosphate flame retardants and the risk of low birth weight: A nested case-control study in China. Environ Sci Technol, 2020, 54(6): 3375-3385.
|
34. |
Kang H, Lee J, Lee JP, et al. Urinary metabolites of organophosphate esters (OPEs) are associated with chronic kidney disease in the general US population, NHANES 2013-2014. Environ Int, 2019, 131: 105034. doi: 10.1016/j.envint.2019.105034.
|
35. |
Vinken M, Hengstler JG. Characterization of hepatocyte-based in vitro systems for reliable toxicity testing. Arch Toxicol, 2018, 92(10): 2981-2986.
|
36. |
Li Z, Tang X, Zhu L, et al. Cytotoxic screening and transcriptomics reveal insights into the molecular mechanisms of trihexyl phosphate-triggered hepatotoxicity. Environ Sci Technol, 2020, 54(18): 11464-11475.
|
37. |
Wang D, Yan S, Yan J, et al. Effects of triphenyl phosphate exposure during fetal development on obesity and metabolic dysfunctions in adult mice: Impaired lipid metabolism and intestinal dysbiosis. Environ Pollut, 2019, 246: 630-638.
|
38. |
Mennillo E, Cappelli F, Arukwe A. Biotransformation and oxidative stress responses in rat hepatic cell-line (H4IIE) exposed to organophosphate esters (OPEs). Toxicol Appl Pharmacol, 2019, 371: 84-94.
|
39. |
Wang X, Li F, Liu J, et al. Transcriptomic, proteomic and metabolomic profiling unravel the mechanisms of hepatotoxicity pathway induced by triphenyl phosphate (TPP). Ecotoxicol Environ Saf, 2020, 205: 111126. doi: 10.1016/j.ecoenv.2020.111126.
|
40. |
Liu C, Su G, Giesy JP, et al. Acute exposure to tris (1, 3-dichloro-2-propyl) phosphate (TDCIPP) causes hepatic inflammation and leads to hepatotoxicity in Zebrafish. Sci Rep, 2016, 6: 19045. doi: 10.1038/srep19045.
|
41. |
Wang S, Hu X, Li X. Sub-chronic exposure to tris (1, 3-dichloro-2-propyl) phosphate induces sex-dependent hepatotoxicity in rats. Environ Sci Pollut Res Int, 2019, 26(32): 33351-33362.
|
42. |
Kim J, Yu L, Chen W, et al. Wild-type p53 promotes cancer metabolic switch by inducing PUMA-dependent suppression of oxidative phosphorylation. Cancer Cell, 2019, 35(2): 191-203.
|
43. |
Farhat A, Buick JK, Williams A, et al. Tris (1, 3-dichloro-2-propyl) phosphate perturbs the expression of genes involved in immune response and lipid and steroid metabolism in chicken embryos. Toxicol Appl Pharmacol, 2014, 275(2): 104-112.
|
44. |
An J, Hu J, Shang Y, et al. The cytotoxicity of organophosphate flame retardants on HepG2, A549 and Caco-2 cells. J Environ Sci Health A Tox Hazard Subst Environ Eng, 2016, 51(11): 980-988.
|
45. |
M Al-Salem A, Saquib Q, Siddiqui MA, et al. Tris(2-chloroethyl) phosphate (TCEP) elicits hepatotoxicity by activating human cancer pathway genes in HepG2 cells. Toxics, 2020, 8(4): 109. doi: 10.3390/toxics8040109.
|
46. |
Yang Y, Xiao Y, Chang Y, et al. Intestinal damage, neurotoxicity and biochemical responses caused by tris (2-chloroethyl) phosphate and tricresyl phosphate on earthworm. Ecotoxicol Environ Saf, 2018, 158: 78-86.
|
47. |
Buerger AN, Schmidt J, Chase A, et al. Examining the responses of the zebrafish (Danio rerio) gastrointestinal system to the suspected obesogen diethylhexyl phthalate. Environ Pollut, 2019, 245: 1086-1094.
|
48. |
Boulangé CL, Neves AL, Chilloux J, et al. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med, 2016, 8(1): 42. doi: 10.1186/s13073-016-0303-2.
|
49. |
Hu J, Raikhel V, Gopalakrishnan K, et al. Effect of postnatal low-dose exposure to environmental chemicals on the gut microbiome in a rodent model. Microbiome, 2016, 4(1): 26. doi: 10.1186/s40168-016-0173-2.
|
50. |
Yan X, He M, Zheng J, et al. Tris (1, 3-dichloro-2-propyl) phosphate exposure disrupts the gut microbiome and its associated metabolites in mice. Environ Int, 2021, 146: 106256. doi: 10.1016/j.envint.2020.106256.
|
51. |
Adamovsky O, Buerger AN, Vespalcova H, et al. Evaluation of microbiome-host relationships in the Zebrafish gastrointestinal system reveals adaptive immunity is a target of bis (2-ethylhexyl) phthalate (DEHP) exposure. Environ Sci Technol, 2020, 54(9): 5719-5728.
|
52. |
Feng J, Cavallero S, Hsiai T, et al. Impact of air pollution on intestinal redox lipidome and microbiome. Free Radic Biol Med, 2020, 151: 99-110.
|
53. |
Li Y, Fu Y, Hu K, et al. Positive correlation between human exposure to organophosphate esters and gastrointestinal cancer in patients from Wuhan, China. Ecotoxicol Environ Saf, 2020, 196: 110548. doi: 10.1016/j.ecoenv.2020.110548.
|
54. |
Pastushenko I, Blanpain C. EMT transition states during tumor progression and metastasis. Trends Cell Biol, 2019, 29(3): 212. doi: 10.1016/j.tcb.2018.12.001-226.
|
55. |
Li S, Cong X, Gao H, et al. Tumor-associated neutrophils induce EMT by IL-17a to promote migration and invasion in gastric cancer cells. J Exp Clin Cancer Res, 2019, 38(1): 6. doi: 10.1186/s13046-018-1003-0.
|
56. |
Srinivas US, Tan BWQ, Vellayappan BA, et al. ROS and the DNA damage response in cancer. Redox Biol, 2019, 25: 101084. doi: 10.1016/j.redox.2018.101084.
|