1. |
Ilyas FZ, Beane JD, Pawlik TM. The state of immunotherapy in hepatobiliary cancers. Cells, 2021, 10(8): 2096. doi: 10.3390/cells10082096.
|
2. |
Satilmis B, Sahin TT, Cicek E, et al. Hepatocellular carcinoma tumor microenvironment and its implications in terms of anti-tumor immunity: future perspectives for new therapeutics. J Gastrointest Cancer, 2021, 52(4): 1198-1205.
|
3. |
Sionov RV. Leveling up the controversial role of neutrophils in cancer: when the complexity becomes entangled. Cells, 2021, 10(9): 2486. doi:10.3390/cells10092486.
|
4. |
Fridlender ZG, Sun J, Kim S, et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell, 2009, 16(3): 183-194.
|
5. |
Ohms M, Möller S, Laskay T. An attempt to polarize human neutrophils toward N1 and N2 phenotypes in vitro. Front Immunol, 2020, 11: 532. doi: 10.3389/fimmu.2020.00532.
|
6. |
Jaillon S, Ponzetta A, Di Mitri D, et al. Neutrophil diversity and plasticity in tumour progression and therapy. Nat Rev Cancer, 2020, 20(9): 485-503.
|
7. |
Albini A, Bruno A, Noonan DM, et al. Contribution to tumor angiogenesis from innate immune cells within the tumor microenvironment: implications for immunotherapy. Front Immunol, 2018, 9: 527. doi:10.3389/fimmu.2018.00527.
|
8. |
Sionov RV, Assi S, Gershkovitz M, et al. Isolation and characterization of neutrophils with anti-tumor properties. J Vis Exp, 2015, (100): e52933. doi: 10.3791/52933.
|
9. |
Sagiv JY, Michaeli J, Assi S, et al. Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep, 2015, 10(4): 562-573.
|
10. |
Demkow U. Neutrophil extracellular traps (NETs) in cancer invasion, evasion and metastasis. Cancers (Basel), 2021, 13(17): 4495. doi:10.3390/cancers13174495.
|
11. |
Qin F, Liu X, Chen J, et al. Anti-TGF-β attenuates tumor growth via polarization of tumor associated neutrophils towards an anti-tumor phenotype in colorectal cancer. J Cancer, 2020, 11(9): 2580-2592.
|
12. |
Andzinski L, Kasnitz N, Stahnke S, et al. Type Ⅰ IFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human. Int J Cancer, 2016, 138(8): 1982-1993.
|
13. |
Korbecki J, Kojder K, Simińska D, et al. CC Chemokines in a tumor: a review of pro-cancer and anti-cancer properties of the ligands of receptors CCR1, CCR2, CCR3, and CCR4. Int J Mol Sci, 2020, 21(21): 8412. doi:10.3390/ijms21218412.
|
14. |
Wu L, Saxena S, Awaji M, et al. Tumor-associated neutrophils in cancer: going pro. Cancers (Basel), 2019, 11(4): 564. doi:10.3390/cancers11040564.
|
15. |
Zhou SL, Zhou ZJ, Hu ZQ, et al. Tumor-associated neutrophils recruit macrophages and T-regulatory cells to promote progression of hepatocellular carcinoma and resistance to sorafenib. Gastroenterology, 2016, 150(7): 1646-1658.
|
16. |
Song M, He J, Pan QZ, et al. Cancer-associated fibroblast-mediated cellular crosstalk supports hepatocellular carcinoma progression. Hepatology, 2021, 73(5): 1717-1735.
|
17. |
He M, Peng A, Huang XZ, et al. Peritumoral stromal neutrophils are essential for c-Met-elicited metastasis in human hepatocellular carcinoma. Oncoimmunology, 2016, 5(10): e1219828. doi:10.1080/2162402X.2016.1219828.
|
18. |
Cheng Y, Li H, Deng Y, et al. Cancer-associated fibroblasts induce PDL1+ neutrophils through the IL6-STAT3 pathway that foster immune suppression in hepatocellular carcinoma. Cell Death Dis, 2018, 9(4): 422. doi:10.1038/s41419-018-0458-4.
|
19. |
Zhou SL, Yin D, Hu ZQ, et al. A Positive feedback loop between cancer stem-like cells and tumor-associated neutrophils controls hepatocellular carcinoma progression. Hepatology, 2019, 70(4): 1214-1230.
|
20. |
Yan C, Yang Q, Gong Z. Tumor-associated neutrophils and macrophages promote gender disparity in hepatocellular carcinoma in zebrafish. Cancer Res, 2017, 77(6): 1395-1407.
|
21. |
Yang Q, Yan C, Gong Z. Activation of liver stromal cells is associated with male-biased liver tumor initiation in xmrk and Myc transgenic zebrafish. Sci Rep, 2017, 7(1): 10315. doi:10.1038/s41598-017-10529-1.
|
22. |
de Oliveira S, Houseright RA, Korte BG, et al. DnaJ-PKAc fusion induces liver inflammation in a zebrafish model of fibrolamellar carcinoma. Dis Model Mech, 2020, 13(4): dmm042564. doi:10.1242/dmm.042564.
|
23. |
Tang J, Yan Z, Feng Q, et al. The roles of neutrophils in the pathogenesis of liver diseases. Front Immunol, 2021, 12: 625472. doi:10.3389/fimmu.2021.625472.
|
24. |
O’Rourke JM, Sagar VM, Shah T, et al. Carcinogenesis on the background of liver fibrosis: Implications for the management of hepatocellular cancer. World J Gastroenterol, 2018, 24(39): 4436-4447.
|
25. |
Calvente CJ, Tameda M, Johnson CD, et al. Neutrophils contribute to spontaneous resolution of liver inflammation and fibrosis via microRNA-223. J Clin Invest, 2019, 129(10): 4091-4109.
|
26. |
He Y, Hwang S, Cai Y, et al. MicroRNA-223 ameliorates nonalcoholic steatohepatitis and cancer by targeting multiple inflammatory and oncogenic genes in hepatocytes. Hepatology, 2019, 70(4): 1150-1167.
|
27. |
Gershkovitz M, Caspi Y, Fainsod-Levi T, et al. TRPM2 mediates neutrophil killing of disseminated tumor cells. Cancer Res, 2018, 78(10): 2680-2690.
|
28. |
Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science, 2004, 303(5663): 1532-1535.
|
29. |
Yang LY, Luo Q, Lu L, et al. Increased neutrophil extracellular traps promote metastasis potential of hepatocellular carcinoma via provoking imorous inflammatory response. J Hematol Oncol, 2020, 13(1): 3. doi:10.1186/s13045-019-0836-0.
|
30. |
Takesue S, Ohuchida K, Shinkawa T, et al. Neutrophil extracellular traps promote liver micrometastasis in pancreatic ductal adenocarcinoma via the activation of cancer-associated fibroblasts. Int J Oncol, 2020, 56(2): 596-605.
|
31. |
Zenlander R, Havervall S, Magnusson M, et al. Neutrophil extracellular traps in patients with liver cirrhosis and hepatocellular carcinoma. Sci Rep, 2021, 11(1): 18025. doi:10.1038/s41598-021-97233-3.
|
32. |
Wang H, Zhang H, Wang Y, et al. Regulatory T-cell and neutrophil extracellular trap interaction contributes to carcinogenesis in non-alcoholic steatohepatitis. J Hepatol, 2021, 75(6): 1271-1283.
|
33. |
van der Windt DJ, Sud V, Zhang H, et al. Neutrophil extracellular traps promote inflammation and development of hepatocellular carcinoma in nonalcoholic steatohepatitis. Hepatology, 2018, 68(4): 1347-1360.
|
34. |
Xu ZG, Ye CJ, Liu LX, et al. The pretransplant neutrophil-lymphocyte ratio as a new prognostic predictor after liver transplantation for hepatocellular cancer: a systematic review and meta-analysis. Biomark Med, 2018, 12(2): 189-199.
|
35. |
Zheng J, Cai J, Li H, et al. Neutrophil to lymphocyte ratio and platelet to lymphocyte ratio as prognostic predictors for hepatocellular carcinoma patients with various treatments: a meta-analysis and systematic review. Cell Physiol Biochem, 2017, 44(3): 967-981.
|
36. |
Hung HC, Lee JC, Wang YC, et al. Response prediction in immune checkpoint inhibitor immunotherapy for advanced hepatocellular carcinoma. Cancers (Basel), 2021, 13(7): 1607. doi:10.3390/cancers13071607.
|
37. |
Eso Y, Takeda H, Taura K, et al. Pretreatment neutrophil-to-lymphocyte ratio as a predictive marker of response to atezolizumab plus bevacizumab for hepatocellular carcinoma. Curr Oncol, 2021, 28(5): 4157-4166.
|
38. |
朱心睿, 张晓赟, 彭伟, 等. 中性粒细胞/淋巴细胞比值对接受经肝动脉化疗栓塞+甲磺酸仑伐替尼+卡瑞利珠单抗治疗的不可切除肝癌的预后预测意义. 中国普外基础与临床杂志, 2021, 28(11): 1426-1433.
|
39. |
Colotta F, Re F, Polentarutti N, et al. Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood, 1992, 80(8): 2012-2020.
|
40. |
van Raam BJ, Drewniak A, Groenewold V, et al. Granulocyte colony-stimulating factor delays neutrophil apoptosis by inhibition of calpains upstream of caspase-3. Blood, 2008, 112(5): 2046-2054.
|
41. |
Hajizadeh F, Aghebati Maleki L, Alexander M, et al. Tumor-associated neutrophils as new players in immunosuppressive process of the tumor microenvironment in breast cancer. Life Sci, 2021, 264: 118699. doi:10.1016/j.lfs.2020.118699.
|
42. |
Sawanobori Y, Ueha S, Kurachi M, et al. Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood, 2008, 111(12): 5457-5466.
|
43. |
Guisier F, Barros-Filho MC, Rock LD, et al. Janus or Hydra: the many faces of t helper cells in the human tumour microenvironment. Adv Exp Med Biol, 2020, 1224: 35-51.
|
44. |
Barnes TA, Amir E. HYPE or HOPE: the prognostic value of infiltrating immune cells in cancer. Br J Cancer, 2018, 118(2): e5. doi:10.1038/bjc.2017.417.
|
45. |
Min GT, Li YM, Yao N, et al. The pretreatment neutrophil-lymphocyte ratio may predict prognosis of patients with liver cancer: A systematic review and meta-analysis. Clin Transplant, 2018, 32(1) : 10.1111/ctr. 13151. doi:10.1111/ctr.13151.
|
46. |
Mouchli M, Reddy S, Gerrard M, et al. Usefulness of neutrophil-to-lymphocyte ratio (NLR) as a prognostic predictor after treatment of hepatocellular carcinoma. Review article. Ann Hepatol, 2021, 22: 100249. doi:10.1016/j.aohep.2020.08.067.
|