1. |
Tansey W, Li K, Zhang H, et al. Dose-response modeling in high-throughput cancer drug screenings: an end-to-end approach. Biostatistics, 2022, 23(2): 643-665.
|
2. |
Wang H, Brown PC, Chow ECY, et al. 3D cell culture models: drug pharmacokinetics, safety assessment, and regulatory consideration. Clin Transl Sci, 2021, 14(5): 1659-1680.
|
3. |
Di-Luoffo M, Pirenne S, Saandi T, et al. A mouse model of cholangiocarcinoma uncovers a role for tensin-4 in tumor progression. Hepatology, 2021, 74(3): 1445-1460.
|
4. |
Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies. Science, 2014, 345(6194): 1247125. doi: 10.1126/science.1247125.
|
5. |
Bruun J, Kryeziu K, Eide PW, et al. Patient-derived organoids from multiple colorectal cancer liver metastases reveal moderate intra-patient pharmacotranscriptomic heterogeneity. Clin Cancer Res, 2020, 26(15): 4107-4119.
|
6. |
Nanki Y, Chiyoda T, Hirasawa A, et al. Patient-derived ovarian cancer organoids capture the genomic profiles of primary tumours applicable for drug sensitivity and resistance testing. Sci Rep, 2020, 10(1): 12581. doi: 10.1038/s41598-020-69488-9.
|
7. |
尹健一, 李幼生, 黎介寿. 小肠类器官的构建与应用进展. 中华实验外科杂志, 2019, 36(7): 1344-1347.
|
8. |
范圣先, 尹健一, 王剑, 等. 胃干细胞调控机制及其在胃类器官构建中的应用研究. 中华消化外科杂志, 2019, 18(3): 287-291.
|
9. |
李向阳, 赵鑫, 相小松, 等. 诱导型多能干细胞在体外三维环境中诱导分化出肠道类器官. 中国组织工程研究, 2017, 21(25): 4057-4061.
|
10. |
耿艳霞, 黎介寿, 李秋荣. 肠道干细胞与肠道损伤修复的研究进展. 医学研究生学报, 2013, 26(2): 181-185.
|
11. |
Huang Z, Ruan HB, Zhang ZD, et al. Mutation in the first Ig-like domain of Kit leads to JAK2 activation and myeloproliferation in mice. Am J Pathol, 2014, 184(1): 122-132.
|
12. |
Yuan B, Zhao X, Wang X, et al. Patient-derived organoids for personalized gallbladder cancer modelling and drug screening. Clin Transl Med, 2022, 12(1): e678. doi: 10.1002/ctm2.678.
|
13. |
Wang Z, Guo Y, Jin Y, et al. Establishment and drug screening of patient-derived extrahepatic biliary tract carcinoma organoids. Cancer Cell Int, 2021, 21(1): 519. doi: 10.1186/s12935-021-02219-w.
|
14. |
袁波. 胆囊良恶性肿瘤类器官培养体系的建立及鉴定. 上海: 中国人民解放军海军军医大学, 2019.
|
15. |
Kasuga A, Semba T, Sato R, et al. Oncogenic KRAS-expressing organoids with biliary epithelial stem cell properties give rise to biliary tract cancer in mice. Cancer Sci, 2021, 112(5): 1822-1838.
|
16. |
Pérez-Moreno P, Riquelme I, García P, et al. Environmental and lifestyle risk factors in the carcinogenesis of gallbladder cancer. J Pers Med, 2022, 12(2): 234. doi: 10.3390/jpm12020234.
|
17. |
Erlangga Z, Wolff K, Poth T, et al. Potent antitumor activity of liposomal irinotecan in an organoid- and CRISPR-Cas9-based murine model of gallbladder cancer. Cancers (Basel), 2019, 11(12): 1904. doi: 10.3390/cancers11121904.
|
18. |
Scanu T, Spaapen RM, Bakker JM, et al. Salmonella manipulation of host signaling pathways provokes cellular transformation associated with gallbladder carcinoma. Cell Host Microbe, 2015, 17(6): 763-774.
|
19. |
García P, Rosa L, Vargas S, et al. Hippo-YAP1 is a prognosis marker and potentially targetable pathway in advanced gallbladder cancer. Cancers (Basel), 2020, 12(4): 778. doi: 10.3390/cancers12040778.
|
20. |
Angeles A, Hung W, Cheung WY. Eligibility of real-world patients with chemo-refractory, K-RAS wild-type, metastatic colorectal cancer for palliative intent regorafenib monotherapy. Med Oncol. 2018, 35(8): 114. doi:10.1007/s12032-018-1176-6.
|
21. |
Saito Y, Muramatsu T, Kanai Y, et al. Establishment of patient-derived organoids and drug screening for biliary tract carcinoma. Cell Rep, 2019, 27(4): 1265-1276.
|
22. |
Löffler MW, Chandran PA, Laske K, et al. Personalized peptide vaccine-induced immune response associated with long-term survival of a metastatic cholangiocarcinoma patient. J Hepatol, 2016, 65(4): 849-855.
|
23. |
Neal JT, Li X, Zhu J, et al. Organoid modeling of the tumor immune microenvironment. Cell, 2018, 175(7): 1972-1988.
|
24. |
Sui M, Li Y, Wang H, et al. Two cases of intrahepatic cholangiocellular carcinoma with high insertion-deletion ratios that achieved a complete response following chemotherapy combined with PD-1 blockade. J Immunother Cancer, 2019, 7(1): 125. doi: 10.1186/s40425-019-0596-y.
|
25. |
Sampaziotis F, Muraro D, Tysoe OC, et al. Cholangiocyte organoids can repair bile ducts after transplantation in the human liver. Science, 2021, 371(6531): 839-846.
|
26. |
Langhans SA. Using 3D in vitro cell culture models in anti-cancer drug discovery. Expert Opin Drug Discov, 2021, 16(8): 841-850.
|
27. |
Driehuis E, Kretzschmar K, Clevers H. Establishment of patient-derived cancer organoids for drug-screening applications. Nat Protoc, 2020, 15(10): 3380-3409.
|
28. |
Schutgens F, Clevers H. Human organoids: tools for understanding biology and treating diseases. Annu Rev Pathol, 2020, 15: 211-234.
|
29. |
Yang H, Wang Y, Wang P, et al. Tumor organoids for cancer research and personalized medicine. Cancer Biol Med, 2021, 19(3): 319-332.
|
30. |
周永杰, 石毓君. 类器官研究进展及展望. 中国普外基础与临床杂志, 2022, 29(6): 716-718.
|
31. |
Driehuis E, van Hoeck A, Moore K, et al. Pancreatic cancer organoids recapitulate disease and allow personalized drug screening. Proc Natl Acad Sci USA, 2019, 116(52): 26580-26590.
|
32. |
Vlachogiannis G, Hedayat S, Vatsiou A, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science, 2018, 359(6378): 920-926.
|
33. |
van de Wetering M, Francies HE, Francis JM, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell, 2015, 161(4): 933-945.
|
34. |
Devarasetty M, Forsythe SD, Shelkey E, et al. In vitro modeling of the tumor microenvironment in tumor organoids. Tissue Eng Regen Med, 2020, 17(6): 759-771.
|
35. |
Fauzi MB, Rashidbenam Z, Bin Saim A, et al. Preliminary study of in vitro three-dimensional skin model using an ovine collagen type Ⅰ sponge seeded with co-culture skin cells: submerged versus air-liquid interface conditions. Polymers (Basel), 2020, 12(12): 2784. doi: 10.3390/polym12122784.
|
36. |
Gonzalez-Exposito R, Semiannikova M, Griffiths B, et al. CEA expression heterogeneity and plasticity confer resistance to the CEA-targeting bispecific immunotherapy antibody cibisatamab (CEA-TCB) in patient-derived colorectal cancer organoids. J Immunother Cancer, 2019, 7(1): 101. doi: 10.1186/s40425-019-0575-3.
|
37. |
Wen YA, Xing X, Harris JW, et al. Adipocytes activate mitochondrial fatty acid oxidation and autophagy to promote tumor growth in colon cancer. Cell Death Dis, 2017, 8(2): e2593. doi: 10.1038/cddis.2017.21.
|
38. |
Usui T, Sakurai M, Enjoji S, et al. Establishment of a novel model for anticancer drug resistance in three-dimensional primary culture of tumor microenvironment. Stem Cells Int, 2016, 2016: 7053872. doi: 10.1155/2016/7053872.
|
39. |
Charelli LE, Ferreira JPD, Naveira-Cotta CP, et al. Engineering mechanobiology through organoids-on-chip: a strategy to boost therapeutics. J Tissue Eng Regen Med, 2021, 15(11): 883-899.
|