1. |
Grönholm M, Feodoroff M, Antignani G, et al. Patient-derived organoids for precision cancer immunotherapy. Cancer Res, 2021, 81(12): 3149-3155.
|
2. |
Drost J, Clevers H. Organoids in cancer research. Nat Rev Cancer, 2018, 18(7): 407-418.
|
3. |
Siegel RL, Miller KD, Fuchs HE, et al. Cancer Statistics, 2021. CA Cancer J Clin, 2021, 71(1): 7-33.
|
4. |
王旭, 程合, 刘辰, 等. 2022年度胰腺癌研究及诊疗新进展. 中国癌症杂志, 2023, 33(1): 1-13.
|
5. |
Overbeek KA, Goggins MG, Dbouk M, et al. Timeline of development of pancreatic cancer and implications for successful early detection in high-risk individuals. Gastroenterology, 2022, 162(3): 772-785.
|
6. |
Sarris EG, Syrigos KN, Saif MW. Pancreatic cancer: updates on translational research and future applications. JOP, 2013, 14(2): 145-148.
|
7. |
Smith E, Cochrane WJ. Cystic organoid teratoma; report of a case. Can Med Assoc J. 1946, 55(2): 151.
|
8. |
Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 2009, 459(7244): 262-265.
|
9. |
Huch M, Bonfanti P, Boj SF, et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J, 2013, 32(20): 2708-2721.
|
10. |
Boj SF, Hwang CI, Baker LA, et al. Organoid models of human and mouse ductal pancreatic cancer. Cell, 2015, 160(1-2): 324-338.
|
11. |
Ungricht R, Guibbal L, Lasbennes MC, et al. Genome-wide screening in human kidney organoids identifies developmental and disease-related aspects of nephrogenesis. Cell Stem Cell, 2022, 29(1): 160-175.
|
12. |
Kulkarni G, Apostolou A, Ewart L, et al. Combining human organoids and organ-on-a-chip technology to model intestinal region-specific functionality. J Vis Exp, 2022, (183). doi: 10.3791/63724.
|
13. |
Murphy SV, De Coppi P, Atala A. Opportunities and challenges of translational 3D bioprinting. Nat Biomed Eng, 2020, 4(4): 370-380.
|
14. |
Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol, 2020, 20(11): 651-668.
|
15. |
Menche C, Farin HF. Strategies for genetic manipulation of adult stem cell-derived organoids. Exp Mol Med, 2021, 53(10): 1483-1494.
|
16. |
Tekguc M, Gaal RCV, Uzel SGM, et al. Kidney organoids: a pioneering model for kidney diseases. Transl Res, 2022, 250: 1-17.
|
17. |
肖雅丽, 张建华, 钟耀广. CRISPR-Cas系统在细菌基因组编辑和代谢调控中的研究进展. 食品与发酵工业, 2022, 48(21): 318-324.
|
18. |
潘少伟, 张华莉. CRISPR-Cas9系统的发现. 中南大学学报(医学版), 2021, 46(12): 1392-1402.
|
19. |
Wen J, Wu J, Cao T, et al. Methylation silencing and reactivation of exogenous genes in lentivirus-mediated transgenic mice. Transgenic Res, 2021, 30(1): 63-76.
|
20. |
Heitink L, Whittle JR, Vaillant F, et al. In vivo genome-editing screen identifies tumor suppressor genes that cooperate with Trp53 loss during mammary tumorigenesis. Mol Oncol, 2022, 16(5): 1119-1131.
|
21. |
Fujii E, Kato A, Suzuki M. Patient-derived xenograft (PDX) models: characteristics and points to consider for the process of establishment. J Toxicol Pathol, 2020, 33(3): 153-160.
|
22. |
闫克敏, 孙佳, 王娇娇, 等. PDX模型在恶性肿瘤中应用的研究进展. 现代肿瘤医学, 2019, 27(9): 1629-1634.
|
23. |
李宏伟, 高先春, 窦建华, 等. 人源免疫重建PDX模型构建及其在肿瘤免疫治疗中的应用进展. 中国肿瘤临床, 2022, 49(11): 541-547.
|
24. |
van der Meel R, Gallagher WM, Oliveira S, et al. Recent advances in molecular imaging biomarkers in cancer: application of bench to bedside technologies. Drug Discov Today, 2010, 15(3-4): 102-114.
|
25. |
Kumari R, Xu X, Li HQ. Translational and clinical relevance of PDX-derived organoid models in oncology drug discovery and development. Curr Protoc, 2022, 2(7): e431. doi: 10.1002/cpz1.431.
|
26. |
Gendoo DMA, Denroche RE, Zhang A, et al. Whole genomes define concordance of matched primary, xenograft, and organoid models of pancreas cancer. PLoS Comput Biol, 2019, 15(1): e1006596. doi: 10.1371/journal.pcbi.1006596.
|
27. |
Shi J, Li Y, Jia R, et al. The fidelity of cancer cells in PDX models: Characteristics, mechanism and clinical significance. Int J Cancer, 2020, 146(8): 2078-2088.
|
28. |
Piro G, Agostini A, Larghi A, et al. Pancreatic cancer patient-derived organoid platforms: A clinical tool to study cell- and non-cell-autonomous mechanisms of treatment response. Front Med (Lausanne), 2021, 8: 793144. doi: 10.3389/fmed.2021.793144.
|
29. |
Junttila MR, de Sauvage FJ. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature, 2013, 501(7467): 346-354.
|
30. |
Collisson EA, Sadanandam A, Olson P, et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat Med, 2011, 17(4): 500-503.
|
31. |
Huang L, Holtzinger A, Jagan I, et al. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat Med, 2015, 21(11): 1364-1371.
|
32. |
Rittmann MC, Hussung S, Braun LM, et al. Plasma biomarkers for prediction of early tumor recurrence after resection of pancreatic ductal adenocarcinoma. Sci Rep, 2021, 11(1): 7499. doi: 10.1038/s41598-021-86779-x.
|
33. |
Meng Q, Xie S, Gray GK, et al. Empirical identification and validation of tumor-targeting T cell receptors from circulation using autologous pancreatic tumor organoids. J Immunother Cancer, 2021, 9(11): e003213. doi: 10.1136/jitc-2021-003213.
|
34. |
Weitz JR, Tiriac H, Hurtado de Mendoza T, et al. Using organotypic tissue slices to investigate the microenvironment of pancreatic cancer: pharmacotyping and beyond. Cancers (Basel), 2021, 13(19): 4991. doi: 10.3390/cancers13194991.
|
35. |
Sándor GO, Soós AÁ, Lörincz P, et al. Wnt Activity and cell proliferation are coupled to extracellular vesicle release in multiple organoid models. Front Cell Dev Biol, 2021, 9: 670825. doi: 10.3389/fcell.2021.670825.
|
36. |
Boonekamp KE, Heo I, Artegiani B, et al. Identification of novel human Wnt target genes using adult endodermal tissue-derived organoids. Dev Biol, 2021, 474: 37-47.
|
37. |
Pascual-Sabater S, Raimondi G, Mato-Berciano A, et al. Preclinical testing of oncolytic adenovirus sensitivity in patient-derived tumor organoids. STAR Protoc, 2021, 2(4): 101017. doi: 10.1016/j.xpro.2021.101017.
|
38. |
Palzer J, Mues B, Goerg R, et al. Magnetic fluid hyperthermia as treatment option for pancreatic cancer cells and pancreatic cancer organoids. Int J Nanomedicine, 2021, 16: 2965-2981.
|
39. |
Tiriac H, Belleau P, Engle DD, et al. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer. Cancer Discov, 2018, 8(9): 1112-1129.
|
40. |
Demyan L, Habowski AN, Plenker D, et al. Pancreatic cancer patient-derived organoids can predict response to neoadjuvant chemotherapy. Ann Surg, 2022, 276(3): 450-462.
|
41. |
Schuth S, Le Blanc S, Krieger TG, et al. Patient-specific modeling of stroma-mediated chemoresistance of pancreatic cancer using a three-dimensional organoid-fibroblast co-culture system. J Exp Clin Cancer Res, 2022, 41(1): 312. doi: 10.1186/s13046-022-02519-7.
|
42. |
Merkle J, Breunig M, Schmid M, et al. CDKN2A-mutated pancreatic ductal organoids from induced pluripotent stem cells to model a cancer predisposition syndrome. Cancers (Basel), 2021, 13(20): 5139. doi: 10.3390/cancers13205139.
|
43. |
Lee JH, Kim H, Lee SH, et al. Establishment of patient-derived pancreatic cancer organoids from endoscopic ultrasound-guided fine-needle aspiration biopsies. Gut Liver, 2022, 16(4): 625-636.
|
44. |
Krieger TG, Le Blanc S, Jabs J, et al. Single-cell analysis of patient-derived PDAC organoids reveals cell state heterogeneity and a conserved developmental hierarchy. Nat Commun, 2021, 12(1): 5826. doi: 10.1038/s41467-021-26059-4.
|
45. |
Perelló-Reus CM, Rubio-Tomás T, Cisneros-Barroso E, et al. Challenges in precision medicine in pancreatic cancer: A focus in cancer stem cells and microbiota. Front Oncol, 2022, 12: 995357. doi: 10.3389/fonc.2022.995357.
|
46. |
Dantes Z, Yen HY, Pfarr N, et al. Implementing cell-free DNA of pancreatic cancer patient-derived organoids for personalized oncology. JCI Insight, 2020, 5(15): e137809. doi: 10.1172/jci.insight.137809.
|
47. |
李甜瑞, 赵瑞波, 张权, 等. 类器官及其应用的研究进展. 生物化学与生物物理进展, 2019, 46(8): 737-750.
|
48. |
Grant TJ, Hua K, Singh A. Molecular pathogenesis of pancreatic cancer. Prog Mol Biol Transl Sci, 2016, 144: 241-275.
|
49. |
Marangoni E, Poupon MF. Patient-derived tumour xenografts as models for breast cancer drug development. Curr Opin Oncol, 2014, 26(6): 556-561.
|
50. |
Eguchi S, Kimura K, Kageyama K, et al. Optimal Organ for Patient-derived Xenograft Model in Pancreatic Cancer and Microenvironment that Contributes to Success. Anticancer Res, 2022, 42(5): 2395-2404.
|
51. |
Jun E, Jung J, Jeong SY, et al. Surgical and oncological factors affecting the successful engraftment of patient-derived xenografts in pancreatic ductal adenocarcinoma. Anticancer Res, 2016, 36(2): 517-521.
|
52. |
Wang Y, Cui J, Wang L. Patient-derived xenografts: a valuable platform for clinical and preclinical research in pancreatic cancer. Chin Clin Oncol, 2019, 8(2): 17. doi: 10.21037/cco.2019.02.04.
|
53. |
Saenz SA, Local A, Carr T, et al. Small molecule allosteric inhibitors of RORγt block Th17-dependent inflammation and associated gene expression in vivo. PLoS One, 2021, 16(11): e0248034. doi: 10.1371/journal.pone.0248034.
|
54. |
Tu MJ, Ho PY, Zhang QY, et al. Bioengineered miRNA-1291 prodrug therapy in pancreatic cancer cells and patient-derived xenograft mouse models. Cancer Lett, 2019, 442: 82-90.
|
55. |
韩品盛, 苗宇, 徐策, 等. 胰腺癌人源性肿瘤异种移植模型的建立及初步应用. 中华实验外科杂志, 2022, 39(9): 1799-1802.
|
56. |
Pham NA, Radulovich N, Ibrahimov E, et al. Patient-derived tumor xenograft and organoid models established from resected pancreatic, duodenal and biliary cancers. Sci Rep, 2021, 11(1): 10619. doi: 10.1038/s41598-021-90049-1.
|
57. |
Giraud J, Bouriez D, Seeneevassen L, et al. Orthotopic patient-derived xenografts of gastric cancer to decipher drugs effects on cancer stem cells and metastatic dissemination. Cancers (Basel), 2019, 11(4): 560. doi: 10.3390/cancers11040560.
|
58. |
Maru Y, Kawata A, Taguchi A, et al. Establishment and molecular phenotyping of organoids from the squamocolumnar junction region of the uterine cervix. Cancers (Basel). 2020, 12(3): 694. doi:10.3390/cancers12030694.
|
59. |
Hoshi D, Kita E, Maru Y, et al. Derivation of pancreatic acinar cell carcinoma cell line HS-1 as a patient-derived tumor organoid. Cancer Sci, 2023, 114(3): 1165-1179.
|
60. |
Yang G, Guan W, Cao Z, et al. Integrative genomic analysis of gemcitabine resistance in pancreatic cancer by patient-derived xenograft models. Clin Cancer Res, 2021, 27(12): 3383-3396.
|
61. |
Zhang T, Zhang L, Fan S, et al. Patient-derived gastric carcinoma xenograft mouse models faithfully represent human tumor molecular diversity. PLoS One, 2015, 10(7): e0134493. doi: 10.1371/journal.pone.0134493.
|