1. |
Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022. CA Cancer J Clin, 2022, 72(1): 7-33.
|
2. |
Zhang Y, Song J, Zhao Z, et al. Single-cell transcriptome analysis reveals tumor immune microenvironment heterogenicity and granulocytes enrichment in colorectal cancer liver metastases. Cancer Lett, 2020, 470: 84-94.
|
3. |
朱德祥, 韦烨, 任黎, 等. 中山医院结直肠癌MDT讨论治疗策略分析. 中华结直肠疾病电子杂志, 2020, 9(3): 236-239.
|
4. |
Liu L, Liu C, Quintero A, et al. Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity. Nat Commun, 2019, 10(1): 470.
|
5. |
Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A, 1977, 74(12): 5463-5467.
|
6. |
Maxam AM, Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A, 1977, 74(2): 560-564.
|
7. |
Mccombie WR, Mcpherson JD, Mardis ER. Next-generation sequencing technologies. Cold Spring Harb Perspect Med, 2019, 9(11):doi: 10.1101/cshperspect.a036798.
|
8. |
van Dijk EL, Jaszczyszyn Y, Naquin D, et al. The third revolution in sequencing technology. Trends Genet, 2018, 34(9): 666-681.
|
9. |
Mannarapu M, Dariya B, Bandapalli OR. Application of single-cell sequencing technologies in pancreatic cancer. Mol Cell Biochem, 2021, 476(6): 2429-2437.
|
10. |
郑小翠. 单细胞测序技术在实体瘤研究中的应用进展. 中国癌症杂志, 2019, 29(7): 535-539.
|
11. |
Gawad C, Koh W, Quake SR. Single-cell genome sequencing: current state of the science. Nat Rev Genet, 2016, 17(3): 175-188.
|
12. |
魏颖. 单细胞转录组测序在哮喘研究中应用的研究进展. 复旦学报(医学版), 2021, 48(3): 404-409.
|
13. |
王莉, 李晓辉. 单细胞测序技术在动脉粥样硬化研究中的研究进展. 医学研究生学报, 2021, 34(9): 969-973.
|
14. |
操利超, 巴颖, 张核子. 单细胞测序方法研究进展. 生物信息学, 2022, 20(2): 91-99.
|
15. |
Song Y, Xu X, Wang W, et al. Single cell transcriptomics: moving towards multi-omics. Analyst, 2019, 144(10): 3172-3189.
|
16. |
Evrony GD, Hinch AG, Luo C. Applications of single-cell DNA sequencing. Annu Rev Genomics Hum Genet, 2021, 22: 171-197.
|
17. |
Feng Y, Zhang Y, Ying C, et al. Nanopore-based fourth-generation DNA sequencing technology. Genomics Proteomics Bioinformatics, 2015, 13(1): 4-16.
|
18. |
Olsen TK, Baryawno N. Introduction to Single-Cell RNA Sequencing. Curr Protoc Mol Biol, 2018, 122(1): e57. doi: 10.1002/cpmb.57.
|
19. |
Yasen A, Aini A, Wang H, et al. Progress and applications of single-cell sequencing techniques. Infect Genet Evol, 2020, 80: 104198. doi: 10.1016/j.meegid.2020.104198.
|
20. |
王权, 王铸, 张振, 等. 单细胞测序的技术概述. 中国医药导刊, 2020, 22(7): 433-439.
|
21. |
Harada A, Kimura H, Ohkawa Y. Recent advances in single-cell epigenomics. Curr Opin Struct Biol, 2021, 71: 116-122.
|
22. |
程馨, 燕蕊, 郭帆. 单细胞多组学技术新进展及其在发育生物学研究中的应用. 中国科学:生命科学, 2021, 51(5): 496-506.
|
23. |
Macaulay IC, Haerty W, Kumar P, et al. G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat Methods, 2015, 12(6): 519-522.
|
24. |
Li H, Courtois ET, Sengupta D, et al. Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat Genet, 2017, 49(5): 708-718.
|
25. |
Tang F, Barbacioru C, Wang Y, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods, 2009, 6(5): 377-382.
|
26. |
Bass AJ, Lawrence MS, Brace LE, et al. Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion. Nat Genet, 2011, 43(10): 964-968.
|
27. |
Yu C, Yu J, Yao X, et al. Discovery of biclonal origin and a novel oncogene SLC12A5 in colon cancer by single-cell sequencing. Cell Res, 2014, 24(6): 701-712.
|
28. |
Zhao J, Chen Y. Systematic identification of cancer-associated-fibroblast-derived genes in patients with colorectal cancer based on single-cell sequencing and transcriptomics. Front Immunol, 2022, 13: 988246. doi: 10.3389/fimmu.2022.988246.
|
29. |
Dai W, Zhou F, Tang D, et al. Single-cell transcriptional profiling reveals the heterogenicity in colorectal cancer. Medicine (Baltimore), 2019, 98(34): e16916. doi: 10.1097/MD.0000000000016916.
|
30. |
Zhou Y, Bian S, Zhou X, et al. Single-Cell multiomics sequencing reveals prevalent genomic alterations in tumor stromal cells of human colorectal cancer. Cancer Cell, 2020, 38(6): 818-828.
|
31. |
Li C, Sun YD, Yu GY, et al. Integrated omics of metastatic colorectal cancer. Cancer Cell, 2020, 38(5): 734-747.
|
32. |
Tsilimigras DI, Brodt P, Clavien PA, et al. Liver metastases. Nat Rev Dis Primers, 2021, 7(1): 27. doi: 10.1038/s41572-021-00261-6.
|
33. |
Heitzer E, Auer M, Gasch C, et al. Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing. Cancer Res, 2013, 73(10): 2965-2975.
|
34. |
Kim TM, Jung SH, An CH, et al. Subclonal genomic architectures of primary and metastatic colorectal cancer based on intratumoral genetic heterogeneity. Clin Cancer Res, 2015, 21(19): 4461-4472.
|
35. |
Leung ML, Davis A, Gao R, et al. Single-cell DNA sequencing reveals a late-dissemination model in metastatic colorectal cancer. Genome Res, 2017, 27(8): 1287-1299.
|
36. |
Bian S, Hou Y, Zhou X, et al. Single-cell multiomics sequencing and analyses of human colorectal cancer. Science, 2018, 362(6418): 1060-1063.
|
37. |
王智锋. 单细胞全外显子组测序在转移性结直肠癌克隆进化中的初步应用. 华南理工大学, 2019.
|
38. |
Miyaki M, Iijima T, Konishi M, et al. Higher frequency of Smad4 gene mutation in human colorectal cancer with distant metastasis. Oncogene, 1999, 18(20): 3098-3103.
|
39. |
李承君, 和水祥. IL-17在结直肠炎-癌转变中的作用机制研究进展. 细胞与分子免疫学杂志, 2022, 38(2): 177-182.
|
40. |
Wu Y, Yang S, Ma J, et al. Spatiotemporal immune landscape of colorectal cancer liver metastasis at single-cell level. Cancer Discov, 2022, 12(1): 134-153.
|
41. |
Tang J, Tu K, Lu K, et al. Single-cell exome sequencing reveals multiple subclones in metastatic colorectal carcinoma. Genome Med, 2021, 13(1): 148. doi: 10.1186/s13073-021-00962-3.
|
42. |
中国医师协会外科医师分会, 中华医学会外科学分会胃肠外科学组, 中华医学会外科学 分会结直肠外科学组, 等. 中国结直肠癌肝转移诊断和综合治疗指南(2020版). 中国实用外科杂志, 2021, 41(1): 1-11.
|
43. |
Tauriello DV, Calon A, Lonardo E, et al. Determinants of metastatic competency in colorectal cancer. Mol Oncol, 2017, 11(1): 97-119.
|
44. |
Kreso A, O'Brien CA, van Galen P, et al. Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science, 2013, 339(6119): 543-548.
|
45. |
Jabbari N, Kenerson HL, Lausted C, et al. Modulation of immune checkpoints by chemotherapy in human colorectal liver metastases. Cell Rep Med, 2020, 1(9): 100160. doi: 10.1016/j.xcrm.2020.100160.
|
46. |
袁浩, 钟华戈, 严林海, 等. 基于生物信息学分析结直肠癌STIM1高频突变介导的免疫抵抗模式及其分子机制. 中国癌症防治杂志, 2020, 12(5): 566-571.
|
47. |
付卫, 黄坤蓉, 付敏, 等. CD73在结直肠癌组织中的表达及其与临床病理参数的关系. 现代肿瘤医学, 2019, 27(10): 1753-1757.
|
48. |
Künzli BM, Bernlochner MI, Rath S, et al. Impact of CD39 and purinergic signalling on the growth and metastasis of colorectal cancer. Purinergic Signal, 2011, 7(2): 231-241.
|
49. |
Kim M, Min YK, Jang J, et al. Single-cell RNA sequencing reveals distinct cellular factors for response to immunotherapy targeting CD73 and PD-1 in colorectal cancer. J Immunother Cancer, 2021, 9(7): e002503. doi: 10.1136/jitc-2021-002503.
|
50. |
Lin C, Yang H, Zhao W, et al. CTSB+ macrophage repress memory immune hub in the liver metastasis site of colorectal cancer patient revealed by multi-omics analysis. Biochem Biophys Res Commun, 2022, 626: 8-14.
|
51. |
马燕如, 季林华, 童天颍, 等. 基于单细胞RNA测序的结直肠癌预后预测模型的建立和验证. 上海交通大学学报(医学版), 2021, 41(2): 159-165.
|