1. |
Handelman GS, Kok HK, Chandra RV, et al. eDoctor: machine learning and the future of medicine. J Intern Med, 2018, 284(6): 603-619.
|
2. |
Gerussi A, Scaravaglio M, Cristoferi L, et al. Artificial intelligence for precision medicine in autoimmune liver disease. Front Immunol, 2022, 13: 966329. doi: 10.3389/fimmu.2022.966329.
|
3. |
Hindson J. Proteomics and machine-learning models for alcohol-related liver disease biomarkers. Nat Rev Gastroenterol Hepatol, 2022, 19(8): 488. doi: 10.1038/s41575-022-00655-1.
|
4. |
Su TH, Wu CH, Kao JH. Artificial intelligence in precision medicine in hepatology. J Gastroenterol Hepatol, 2021, 36(3): 569-580.
|
5. |
李昊朋. 基于机器学习方法的智能机器人探究. 通讯世界, 2019, 26(4): 241-242.
|
6. |
Deo RC. Machine learning in medicine. Circulation, 2015, 132(20): 1920-1930.
|
7. |
葛恭豪. 机器学习算法原理及效率分析. 电子世界, 2018, 40(1): 65-66.
|
8. |
Ji W, Xue M, Zhang Y, et al. A machine learning based framework to identify and classify non-alcoholic fatty liver disease in a large-scale population. Front Public Health, 2022, 10: 846118. doi: 10.3389/fpubh.2022.846118.
|
9. |
雷丽, 李运明. 基于机器学习算法建立脂肪肝预测模型. 甘肃科学学报, 2022, 34(3): 16-20, 37.
|
10. |
戴晓霞, 李娟, 王晨阳, 等. 基于机器学习的脂肪肝预测模型构建. 湖北医药学院学报, 2022, 41(6): 574-577, 583, 666.
|
11. |
Lim J, Han S, Lee D, et al. Identification of hepatic steatosis in living liver donors by machine learning models. Hepatol Commun, 2022, 6(7): 1689-1698.
|
12. |
Wang K, Lu X, Zhou H, et al. Deep learning radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: a prospective multicentre study. Gut, 2019, 68(4): 729-741.
|
13. |
Hatami B, Asadi F, Bayani A, et al. Machine learning-based system for prediction of ascites grades in patients with liver cirrhosis using laboratory and clinical data: design and implementation study. Clin Chem Lab Med, 2022, 60(12): 1946-1954.
|
14. |
Mao B, Ma J, Duan S, et al. Preoperative classification of primary and metastatic liver cancer via machine learning-based ultrasound radiomics. Eur Radiol, 2021, 31(7): 4576-4586.
|
15. |
Oyama A, Hiraoka Y, Obayashi I, et al. Hepatic tumor classification using texture and topology analysis of non-contrast-enhanced three-dimensional T1-weighted MR images with a radiomics approach. Sci Rep, 2019, 9(1): 8764. doi: 10.1038/s41598-019-45283-z.
|
16. |
胥生科, 窦景锐, 吾布里塔里甫·达吾提, 等. 基于血清SERS的肝癌分类模型的机器学习算法优化研究. 兰州大学学报 (医学版), 2022, 48(11): 76-80, 85.
|
17. |
Li M, Li X, Guo Y, et al. Development and assessment of an individualized nomogram to predict colorectal cancer liver metastases. Quant Imaging Med Surg, 2020, 10(2): 397-414.
|
18. |
Yang X, Shao G, Liu J, et al. Predictive machine learning model for microvascular invasion identification in hepatocellular carcinoma based on the LI-RADS system. Front Oncol, 2022, 12: 1021570. doi: 10.3389/fonc.2022.1021570.
|
19. |
张旭辉, 索朗拉姆, 邱甲军, 等. 基于超声影像组学建立肝棘球蚴病分型模型的可行性研究. 中国血吸虫病防治杂志, 2022, 34(5): 500-506, 536.
|
20. |
许文瑶, 张铁亮, 夏雨薇, 等. 基于CT影像的机器学习模型术前预测肝脏泡型包虫病边缘带浸润. 中国医学计算机成像杂志, 2022, 28(3): 286-290.
|
21. |
Tran KA, Kondrashova O, Bradley A, et al. Deep learning in cancer diagnosis, prognosis and treatment selection. Genome Med, 2021, 13(1): 152. doi: 10.1186/s13073-021-00968-x.
|
22. |
Jung S, Park K, Ihn K, et al. Predicting graft failure in pediatric liver transplantation based on early biomarkers using machine learning models. Sci Rep, 2022, 12(1): 22411. doi: 10.1038/s41598-022-25900-0.
|
23. |
Giglio MC, Zanfardino M, Franzese M, et al. Machine learning improves the accuracy of graft weight prediction in living donor liver transplantation. Liver Transpl, 2023, 29(2): 172-183.
|
24. |
Chen S, Liu LP, Wang YJ, et al. Advancing prediction of risk of intraoperative massive blood transfusion in liver transplantation with machine learning models. A multicenter retrospective study. Front Neuroinform, 2022, 16: 893452. doi: 10.3389/fninf.2022.893452.
|
25. |
Abajian A, Murali N, Savic LJ, et al. Predicting treatment response to intra-arterial therapies for hepatocellular carcinoma with the use of supervised machine learning-an artificial intelligence concept. J Vasc Interv Radiol, 2018, 29(6): 850-857.
|
26. |
严律南, 杨家印. 人工智能肝癌临床决策支持系统的开发、验证和应用价值. 中国普外基础与临床杂志, 2020, 27(9): 1052-1056.
|
27. |
Liu X, Zheng D, Zhong Y, et al. Machine-learning prediction of oral drug-induced liver injury (DILI) via multiple features and endpoints. Biomed Res Int, 2020, 2020: 4795140. doi: 10.1155/2020/4795140.
|
28. |
Minerali E, Foil DH, Zorn KM, et al. Comparing machine learning algorithms for predicting drug-induced liver injury (DILI). Mol Pharm, 2020, 17(7): 2628-2637.
|
29. |
Kim JS, Han JM, Cho YS, et al. Machine learning approaches to predict hepatotoxicity risk in patients receiving Nilotinib. Molecules, 2021, 26(11): 3300. doi: 10.3390/molecules26113300.
|
30. |
Campagnini S, Arienti C, Patrini M, et al. Machine learning methods for functional recovery prediction and prognosis in post-stroke rehabilitation: a systematic review. J Neuroeng Rehabil, 2022, 19(1): 54. doi: 10.1186/s12984-022-01032-4.
|
31. |
Liu S, See KC, Ngiam KY, et al. Reinforcement learning for clinical decision support in critical care: comprehensive review. J Med Internet Res, 2020, 22(7): e18477. doi: 10.2196/18477.
|
32. |
Saillard C, Schmauch B, Laifa O, et al. Predicting survival after hepatocellular carcinoma resection using deep learning on histological slides. Hepatology, 2020, 72(6): 2000-2013.
|
33. |
Liu X, Lu J, Zhang G, et al. A machine learning approach yields a multiparameter prognostic marker in liver cancer. Cancer Immunol Res, 2021, 9(3): 337-347.
|
34. |
Wang Y, Ji C, Wang Y, et al. Predicting postoperative liver cancer death outcomes with machine learning. Curr Med Res Opin, 2021, 37(4): 629-634.
|
35. |
Jolissaint JS, Wang T, Soares KC, et al. Machine learning radiomics can predict early liver recurrence after resection of intrahepatic cholangiocarcinoma. HPB (Oxford), 2022, 24(8): 1341-1350.
|
36. |
崔金涛, 许建生. 钆塞酸二钠增强MRI影像组学对肝血管瘤腹腔镜肝切除术后疗效的预测价值. 肝胆胰外科杂志, 2022, 34(5): 271-278.
|
37. |
Guo A, Mazumder NR, Ladner DP, et al. Predicting mortality among patients with liver cirrhosis in electronic health records with machine learning. PLoS One, 2021, 16(8): e0256428. doi: 10.1371/journal.pone.0256428.
|
38. |
Park H, Lo-Ciganic WH, Huang J, et al. Machine learning algorithms for predicting direct-acting antiviral treatment failure in chronic hepatitis C: an HCV-TARGET analysis. Hepatology, 2022, 76(2): 483-491.
|
39. |
Tonon M, Moreau R. Using machine learning for predicting outcomes in ACLF. Liver Int, 2022, 42(11): 2354-2355.
|